

DG79V341H10

Seasona efficiency Seasons efficienc Rated Low-te Rated Rated kWh kWh EHSD-****D ✓ A++ 6 126 3834 41 6 6 111 150 5181 2093 54 ✓ A+++ 6 181 2701 41 6 6 135 208 4284 1519 54 UZ-SWM60VAA
 ++++
 6
 184
 2646
 41
 6
 6
 136
 218
 4251
 1453
 54

 ++++
 8
 181
 3599
 41
 8
 8
 141
 219
 5460
 1928
 54
 128 3779 6 6 112 155 5147 2027 54 ~ 8 8 111 162 6890 2584 54 129 5016 ~ ✓ A++ 8 JZ-SWM80VAA 227 5427 1862 54 ERSD-****D ✓ A++ 8 130 4961 41 8 8 112 167 6857 2517 54 ~ A+++ 8 184 3543 41 8 8 142 3636 41 3555 41 128 5053 130 4972 8 8 8 8 2584 54 2517 54 * * A+++ 8 179 A+++ 8 183 8 8 141 8 8 142 219 5493 227 5444 111 112 162 6923 167 6875 < < A++ A++ 41 1928 1862 54 54 UZ-SWM80YAA EHSD-****D ✓ A++ 10 132 6106 41 10 10 109 156 8813 3362 58 ✓ A+++ 10 178 4564 41 10 10 147 223 6575 2369 58 UZ-SWM100VAA
 •
 A++
 10
 134
 6051
 41
 10
 10
 109
 159
 8780
 3286
 68
 •
 A+++
 10
 180
 4509
 41
 10
 10
 147
 229
 6555
 2302
 58

 •
 A++
 10
 132
 6141
 41
 10
 109
 154
 8840
 3405
 58
 •
 A+++
 10
 177
 4600
 41
 10
 10
 147
 229
 6555
 2302
 58

 •
 A++
 10
 132
 6141
 41
 10
 109
 154
 8840
 3405
 58
 •
 A+++
 10
 177
 4600
 41
 10
 10
 146
 219
 6601
 2411
 58

 •
 A++
 10
 133
 6061
 41
 10
 109
 159
 8791
 3308
 58
 •
 A+++
 10
 180
 4519
 41
 10
 ERSD-****D EHSD-****D JZ-SWM100YA ERSD-****
 12
 131
 7450

 12
 132
 7395
 ✓ A++
 ✓ A++
 ✓
 A+++
 12
 177

 ✓
 A+++
 12
 178

 12
 12
 109
 154
 10673
 4115
 58

 12
 12
 109
 157
 10640
 4049
 58

 5566
 41
 12
 12
 141

 5511
 41
 12
 12
 141

 221
 8290
 2882
 58

 227
 8257
 2816
 58
 EHSD-****D 41 UZ-SWM120VAA EHSD-****D ✓ A++ 12 131 7485 41 12 12 109 153 10698 4157 58 ✓ A+++ 12 176 5600 41 12 12 140 218 8316 2922 58 UZ-SWM120YAA ✓ A++ 12 132 7404 41 12 12 109 156 10649 4060 58 ✓ A+++ 12 178 5520 41 12 12 141 226 8267 2825 58 ERSD-****C
 11
 14
 14
 104
 150
 12843
 4893
 58
 ✓
 A+++
 14
 175

 41
 14
 14
 105
 152
 12810
 4826
 58
 ✓
 A+++
 14
 177

 41
 14
 105
 152
 12810
 4826
 58
 ✓
 A+++
 14
 177

 6483
 41
 14
 14
 132
 219
 10250
 3367
 58

 6428
 41
 14
 142
 132
 224
 10217
 3301
 58
 ✓ A++
 ✓ A++ A++ 14 134 8438 JZ-SWM140VA 14 135 8383
 ✔
 A+++
 14
 175

 ✔
 A+++
 14
 177

 ✔
 A++
 14
 134
 8473
 41

 ✔
 A++
 14
 135
 8392
 41

 14
 14
 104
 149
 12867
 4934
 58

 14
 14
 105
 152
 12819
 4837
 58

 6517
 41
 14
 14
 131

 6437
 41
 14
 14
 132

 217
 10275
 3407
 58

 223
 10226
 3310
 58
 UZ-SWM140YAA ✓ A++ 6 129 3761 41 6 6 115 159 4993 1980 54
✓ A+++ 6 184 2655 41 6 6 138 220 4202 1437 54 JZ-SHWM60VA ERSD-****C ✓ A++ 6 131 3706 41 6 6 116 165 4960 1914 54 🗸 A+++ 6 188 2600 41 6 6 139 231 4168 1371 54
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6

 ✔
 A++
 8
 132
 4904
 41

 ✔
 A++
 8
 133
 4849
 41
 JZ-SHWM80VA ERSD-****C
 8
 8
 114
 167
 6737
 2521
 54
 \checkmark A+++
 8
 182
 3588
 41
 8
 8
 145
 225
 5332
 1874
 54

 8
 8
 115
 171
 6689
 2454
 54
 \checkmark A+++
 8
 187
 3487
 41
 8
 8
 146
 233
 5284
 1608
 54

 10
 101
 164
 4272
 3204
 58
 \checkmark A+++
 10
 183
 4444
 41
 10
 104
 149
 236
 6480
 223
 58

 10
 101
 117
 167
 8239
 3138
 58
 \checkmark A+++
 10
 185
 4344
 41
 10
 10
 150
 244
 6447
 2167
 58

 10
 101
 117
 167
 8239
 3138
 58
 \checkmark A+++
 10
 185
 4348
 41
 10
 10
 EHSD-***D ✓ A++ 8 131 4941 41 UZ-SHWM80YAA ✓ A++ 8 133 4860 ✓ A++ 10 136 5936 41 EHSD-****D JZ-SHWM100VAA ERSD-****C ✓ A++ 10 138 5881 41 10 10 117 167 8239 3138 58
 10
 10
 116
 162
 8298
 3246
 58

 10
 10
 116
 162
 8298
 3246
 58

 10
 10
 117
 167
 8250
 3149
 58

 4480
 41
 10
 10
 149
 232
 6508
 2276

 4399
 41
 10
 10
 150
 242
 6459
 2179
 A++ 10 A++ 10 135 5972 137 5891 41 41 **~** A+++ 10 181 A+++ 10 185 58 58 HSD-****C UZ-SHWM100YAA EHSD-****D 12 136 7169 12 12 117 161 9902 3952 58 A+++ 12 179 5481 41 12 12 149 232 7843 2753 58 ✓ A++ 41 ~ UZ-SHWM120VAA
 •
 A++
 12
 138
 7114
 41
 12
 12
 118
 163
 9869
 3886
 58
 •
 A+++
 12
 181
 5426
 41
 12
 12
 150
 238
 7810
 2687
 58

 •
 A++
 12
 136
 7204
 41
 12
 12
 118
 568
 •
 A+++
 12
 181
 5426
 41
 12
 12
 150
 238
 7810
 2687
 58

 •
 A++
 12
 136
 7204
 41
 12
 12
 178
 5516
 41
 12
 149
 228
 7868
 2793
 58

 •
 A++
 12
 137
 7123
 41
 12
 118
 543
 41
 12
 12
 150
 237
 7819
 2696
 58

 •
 A++
 12
 181
 5435
 41
 12
 12
 150
 237
 7819
 269 JZ-SHWM120YA RSD-****[EHSD-****D
 14
 14
 115
 156
 11650
 4715
 58

 14
 14
 116
 158
 11617
 4649
 58

 ✓
 A+++
 14
 183

 ✓
 A+++
 14
 184

 6227
 41
 14
 14
 153
 225
 8841
 3279
 58

 6172
 41
 14
 144
 154
 230
 8807
 3212
 58
 14 14 ✓ A++ 141 8021 142 7965 41 41 UZ-SHWM140VAA 154 11674 4757 58 14 141 8055 14 14 115 14 182 6262 41 14 14 153 222 8865 3319 ✓ A++ 41 58 UZ-SHWM140YAA ✓ A+++ 14 184 6181 41 14 14 154 229 8816 3222 58 ✓ A++ 14 142 7974 41 14 14 116 158 11625 4659 58 RSD-****C 2.COMBINATION HEATER For medium-temperature application For low-temperature application 16 17 18 19 20 21 22 23 24 25 4 5 6 5 6 7 8 9 10 11 12 13 14 15 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 y consumption climate conditions heating energy average climate etficiency conditions ficiency onditions energy climate efficiency conditions efficiency conditions energy dimate ficiency ditions fficiency onditions older l energy climate ndoor under nditions under unit heating warmer snergy el climate c nergy 6 eatin varmer energy energy limate (d profile Indoor neat output u conditions heat output u output sat output conditions heat outpu space e heatir nergy c space electricity verage o al space sy under space space leating rarmer older For water annual elt under ave Seasonal v efficiency t conditions For space annual en For space For space annual en under water annual en annual en annual en annual en annual en ceficiency cesconal efficiency conditions Seasonal efficiency For space annual er average of annual el annual el seconal ficiency condition Declared Seasons efficienc Rated h For spac annual e under oc annual e For wati annual e For wati annual e under o Seasona efficienc condition Season efficient conditio Rated h average Rated h Declare Rated h Water Water under Water Water class Water under Water under -mokW kWh kW kWh kW
 kW
 kWh
 kWh
 kWh
 kWh

 6
 6
 5181
 2093
 1060
 846
 ✓ L A+++ A+ 6 2701 880 181 134 41 ✓ L A++ A+ 6 3834 880 126 134 41 111 150 105 135 54 6 6 4284 1519 1060 846 135 208 105 135 54 L A++ A+ 6 3779 880 128 134
 ✔
 L
 A+++
 A+
 6
 2646
 880
 184
 134

 ✔
 L
 A+++
 A+
 6
 2701
 898
 181
 134

 ✔
 L
 A+++
 A+
 6
 2646
 898
 181
 134

 ✔
 L
 A+++
 A+
 6
 2646
 898
 184
 134
 ERST17D-****D ~ 41 6 6 5147 2027 1060 846 112 155 105 135 54 6 2646 880 184 134 41 6 6 4251 1453 1060 846 136 218 105 135 54 EHST20D-*
 ✓
 L
 A++
 A+
 6
 3834

 ✓
 L
 A++
 A+
 6
 3779

 898
 126
 134

 898
 128
 134

 6
 6
 5181

 6
 6
 5147

 2021
 1000
 840

 2093
 1044
 841

 2027
 1044
 841

 112
 166
 166
 166
 64

 111
 150
 109
 139
 54

 112
 155
 109
 139
 54

 6
 6
 4284
 1519

 6
 6
 4251
 1453

 1000
 040
 100
 100
 100
 100
 100
 100

 1044
 841
 135
 208
 109
 139
 54

 1044
 841
 136
 218
 109
 139
 54
 41 41 41 41 UZ-SWM60VA A+ 6 3834 1404 126 133 111 150 111 155 54 EHST30D-****C ✓ XL A++ 41 6 6 5181 2093 1650 1232 ~ XL A+++ A+ 6 2701 1404 181 133 41 6 6 4284 1519 1650 1232 135 208 111 155 54
 ✓
 XL
 A+++
 A+
 6
 2/10
 1/404
 181
 1.33
 41

 ✓
 XL
 A+++
 A+
 6
 2/40
 1/404
 184
 133
 41

 ✓
 L
 A+++
 A+
 8
 3599
 880
 181
 133
 41

 ✓
 L
 A+++
 A+
 8
 3599
 880
 181
 134
 41

 ✓
 L
 A+++
 A+
 8
 3599
 898
 184
 134
 41

 ✓
 L
 A+++
 A+
 8
 3599
 898
 184
 134
 41

 ✓
 L
 A+++
 A+
 8
 3599
 1404
 181
 133
 41

 ✓
 XL
 A+++
 A+
 8
 3599
 1404
 181
 133
 41

 ✓
 XL
 A+++
 A+
 8
 3599
 1404
 181
 133
 41
 ERST30D-** EHST17D-**
 ×
 XL
 A++
 A+
 6
 3779

 ×
 L
 A++
 A+
 8
 5016

 ×
 L
 A++
 A+
 8
 4961

 1404
 128
 133
 41

 880
 129
 134
 41

 6
 6
 5147
 2027
 1650
 1232

 8
 8
 6890
 2584
 1060
 846

 8
 8
 6857
 2517
 1060
 846

 2027
 1650
 1232

 2584
 1060
 846

 111
 130
 111
 133
 54

 112
 155
 111
 155
 54

 111
 162
 105
 135
 54

 112
 167
 105
 135
 54

 6
 6
 4251
 1453

 8
 8
 5460
 1928

 1650
 1232
 136
 218
 111
 155
 54

 1060
 846
 141
 219
 105
 135
 54
 ERST17D-****0 880 130 134 41 8 8 5427 1862 1060 846 142 227 105 135 54
 8
 8
 6890

 8
 8
 6857
 EHST20D-*** ERST20D-***
 ✓
 L
 A++
 A+
 8
 5016

 ✓
 L
 A++
 A+
 8
 4961

 ✓
 XL
 A++
 A+
 8
 5016

 898
 129
 134
 41

 898
 130
 134
 41

 2584
 1044
 841

 2517
 1044
 841

 2584
 1650
 1232

 111
 162
 109
 139
 54

 112
 167
 109
 139
 54

 111
 162
 111
 155
 54

 8
 8
 5460
 1928

 8
 8
 5460
 1928

 8
 8
 5427
 1862

 8
 8
 5460
 1928

 1044
 841
 141
 219
 109
 139
 54

 1044
 841
 142
 227
 109
 139
 54

 1650
 1232
 141
 219
 111
 155
 54
 UZ-SWM80VA EHST30D-****[1404 129 133 41 8 8 6890
 ★
 λ+
 λ+
 δ
 5016

 ✓
 XL
 A++
 A+
 δ
 9016

 ✓
 L
 A++
 A+
 δ
 4961

 ✓
 L
 A++
 A+
 δ
 5053

 ✓
 L
 A++
 A+
 δ
 4972

 ✓
 L
 A++
 A+
 δ
 5053

 ✓
 L
 A++
 A+
 δ
 9072

 1404
 125
 135
 41

 1404
 130
 133
 41

 880
 128
 134
 41

 880
 130
 134
 41

 111
 162
 111
 155
 54

 112
 167
 111
 155
 54

 111
 162
 105
 135
 54

 112
 167
 105
 135
 54

 111
 162
 105
 135
 54

 111
 162
 109
 139
 54

 111
 162
 109
 139
 54

 112
 167
 109
 139
 54

 114
 162
 109
 139
 54
 ERST30D-* EHST17D-*
 8
 8
 6857

 8
 8
 6923

 8
 8
 6875

 2517
 1650
 1232

 2584
 1060
 846

 2517
 1060
 846

 ✓
 XL
 A+++
 A+
 8
 3643
 1404
 184
 133
 41

 ✓
 L
 A+++
 A+
 8
 3636
 880
 179
 134
 41

 ✓
 L
 A+++
 A+
 8
 3555
 880
 183
 134
 41

 8
 8
 5427
 1862
 1650
 1232
 142
 227
 111
 155
 54

 8
 8
 5493
 1928
 1060
 846
 141
 219
 105
 135
 54

 8
 8
 5444
 1862
 1060
 846
 142
 227
 105
 135
 54
 ERST17D-****
 898
 128
 134
 41

 898
 130
 134
 41
 8 8 6923 8 8 6875
 2584
 1044
 841

 2517
 1044
 841

 ✓
 L
 A+++
 A+
 8
 3636
 898
 179
 134

 ✓
 L
 A+++
 A+
 8
 3555
 898
 183
 134

 8
 8
 5493
 1928

 8
 8
 5444
 1862

 1044
 841
 141
 219
 109
 139
 54

 1044
 841
 142
 227
 109
 139
 54
 HST20D-** 41 UZ-SWM80YAA ST20D-* 41
 XL
 A+++
 A+
 B
 368
 1404
 170
 133
 41

 ✓
 XL
 A+++
 A+
 B
 3655
 1404
 170
 133
 41

 ✓
 L
 A+++
 A+
 B
 3655
 1404
 178
 133
 41

 ✓
 L
 A+++
 A+
 10
 4564
 898
 180
 134
 41

 ✓
 L
 A+++
 A+
 10
 4564
 898
 180
 134
 41

 ✓
 L
 A+++
 A+
 10
 4564
 1404
 178
 133
 41

 ✓
 XL
 A+++
 A+
 10
 4509
 1404
 180
 133
 41

 ✓
 XL
 A+++
 A+
 10
 4509
 1404
 180
 133
 41

 ✓
 XL
 A+++
 A+
 10
 4509
 609
 173
 34
 41

</tabu/> EHST30D-* ✓ XL A++ A+ 8 5053 1404 128 133 41 8 8 6923 2584 1650 1232 111 162 111 155 54 8 8 5493 1928 1650 1232 141 219 111 155 54
 2594
 1630
 1232
 111
 162
 111
 153
 54

 2517
 1650
 1232
 112
 1167
 111
 155
 54

 3362
 1044
 841
 109
 156
 1109
 139
 58

 3266
 1044
 841
 109
 156
 111
 155
 54

 3282
 1650
 1232
 109
 156
 111
 155
 58

 3296
 1650
 1232
 109
 156
 111
 155
 58

 ✓
 XL
 A++
 A+
 8
 4972

 ✓
 L
 A++
 A+
 10
 6106

 ✓
 L
 A++
 A+
 10
 6051

 ✓
 L
 A++
 A+
 10
 6051

 1404
 130
 133
 41

 898
 132
 134
 41

 898
 134
 134
 41

 8
 8
 6875

 10
 10
 8813

 6
 6
 6
 6
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 <th7</th>
 <th7</th>
 <th7</th>
 <th7</th>
 ERST30D-* EHST20D-* ERST20D-*** 10 10 8780 UZ-SWM100VAA ✓ XL A++
 ✓ XL A++ A+ 10 A+ 10 10 8813 10 8780
 1232
 147
 223

 1232
 147
 229
 111 155 111 155 HST30D-*** ~ 6106 1404 132 133 133 41 10 10 10 10 10 6575 2369 1650 58 58 A++ 6555 2302
 3405
 104
 841
 109
 154
 109
 139
 58

 3308
 1044
 841
 109
 159
 109
 139
 58

 3405
 1565
 1232
 109
 154
 111
 155
 58

 3405
 1650
 1232
 109
 154
 111
 155
 58
 EHST20D-**** ✓ L A++ A+ 10 6141 898 132 134 41 10 10 8840 ✓ L A+++ A+ 10 4600 898 177 134 41 10 10 6601 2411 1044 841 146 219 109 139 58 A+ 10 A+ 10
 10
 8791

 10
 8840

 ↓
 L
 A+++
 A+
 10
 4519
 898
 180
 134

 ✓
 XL
 A+++
 A+
 10
 4600
 1404
 177
 133

 ✓
 XL
 A+++
 A+
 10
 4519
 1404
 180
 133

 10
 10
 6665
 2314
 1044
 841
 147
 228
 109
 139
 58

 10
 10
 6601
 2411
 1650
 1232
 146
 219
 111
 155
 58

 10
 10
 6565
 2314
 1650
 1232
 146
 219
 111
 155
 58

 10
 10
 6565
 2314
 1650
 1232
 147
 228
 111
 155
 58
 ERST20D-**** A++ 6061 898 133 134 41 41 ~ 10 JZ-SWM100YA HST30D-* 6141 1404 132 RST30D-*** ✓ XL A++ A+ 10 6061 1404 133 133 41 10 10 8791 3308 1650 1232 109 159 111 155 58 41 EHST20D-**** ERST20D-**** EHST30D-****
 ✓
 L
 A++
 A+
 12
 7450

 ✓
 L
 A++
 A+
 12
 7395

 ✓
 XL
 A++
 A+
 12
 7395

 898
 131
 134
 41

 898
 132
 134
 41

 1404
 131
 133
 41

 12
 102
 10673
 4115
 1044
 841
 109
 154
 109
 139
 58

 12
 12
 10640
 4049
 1044
 841
 109
 157
 109
 139
 58

 12
 12
 10640
 4049
 1044
 841
 109
 157
 109
 139
 58

 12
 12
 10673
 4115
 1650
 1232
 109
 154
 111
 155
 58

 ✔
 L
 A+++
 A+
 12
 5566
 898
 177
 134
 41

 ✔
 L
 A+++
 A+
 12
 5511
 898
 178
 134
 41

 ✔
 XL
 A+++
 A+
 12
 5566
 1404
 177
 133
 41

 12
 12
 8290
 2882
 1044
 841
 141
 221
 109
 139
 58

 12
 12
 8257
 2816
 1044
 841
 141
 227
 109
 139
 58

 12
 12
 8290
 2882
 1650
 1232
 141
 227
 109
 139
 58
 UZ-SWM120VA ERST30D-* XL A+ 12 7395 1404 132 133 12 10640 4049 1650 1232 109 157 111 155 58 XL A+++ A+ 5511 1404 178 133 41 12 8257 2816 1650 1232 141 227 111 155 58 A++ 41 ~ 12 12
 V
 L
 A++
 A+
 12

 V
 L
 A++
 A+
 12

 V
 L
 A++
 A+
 12

 V
 XL
 A++
 A+
 12
 7485 7404
 898
 131
 134

 898
 132
 134

 12
 12
 10640

 12
 12
 10698

 12
 12
 10649

 4040
 1088
 1282

 4157
 1044
 841

 4060
 1044
 841

 109
 153
 109
 139
 58

 109
 156
 109
 139
 58

 109
 156
 109
 139
 58

 109
 153
 111
 155
 58

 ✓
 L
 A+++
 A+
 12
 5600
 898
 176
 134

 ✓
 L
 A+++
 A+
 12
 5520
 898
 178
 134

 ✓
 L
 A+++
 A+
 12
 5500
 1404
 176
 133

 12
 12
 8316
 2922

 12
 12
 8267
 2825

 1000
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 10111111
 10111111
 10111111
 10111111
 10111111
 101111111
 1011111111
 101111111111
 101111111111111
 101111111 41 41 41 41 RST20D-*** UZ-SWM120YAA EHST30D-****[7485 1404 131 133 41 12 12 10698 4157 1650 1232 41 12 12 8316 2922 1650 1232 140 218 111 155 58
 ✓
 XL
 A++
 A+
 12
 7404

 ✓
 L
 A++
 A+
 14
 8438

 1404
 132
 133
 41

 965
 134
 123
 41

 12
 12
 13833

 12
 12
 10649

 14
 14
 12843

 4060
 1650
 1232

 4893
 1070
 888

 100
 150
 111
 155
 58

 109
 156
 111
 155
 58

 104
 150
 105
 130
 58

 105
 152
 105
 130
 58

 XL
 A+++
 A+
 12
 5526
 164
 175
 163
 A+1

 V
 L
 A+++
 A+
 14
 6483
 965
 175
 123
 41

 V
 L
 A+++
 A+
 14
 6428
 965
 177
 123
 41

 12
 12
 0010
 1312

 12
 12
 8267
 2825

 14
 14
 10250
 3367

 1650
 122
 141
 226
 111
 155
 58

 1070
 888
 132
 219
 105
 130
 58

 1070
 888
 132
 224
 105
 130
 58
 RST30D-IST20D-* ERST20D-****[~ A++ A+ 14 8383 965 135 123 41 14 14 12810 4826 1070 888 14 14 10217 3301 L * * UZ-SWM140VAA A 14 8438 A 14 8383
 1610
 134

 1610
 135

 14
 14
 12843
 4893
 1755
 1434

 14
 14
 12810
 4826
 1755
 1434

 100
 100
 100
 100
 100

 104
 150
 104
 130
 58

 105
 152
 104
 130
 58

 XL
 A+++
 A
 14
 6483
 1610

 XL
 A+++
 A
 14
 6428
 1610
 14 14
 14
 10250
 3367
 1755
 1434
 132
 219
 104
 130
 58

 14
 10217
 3301
 1755
 1434
 132
 224
 104
 130
 58
 EHST30D-* XL A++ XL A++ 114 41 114 41 175 114 177 114 41 ~ 41 ST30D-
 ✔
 L
 A++
 A+
 14
 8473
 965
 134
 123
 41

 ✔
 L
 A++
 A+
 14
 8392
 965
 135
 123
 41

 ✔
 L
 A++
 A
 14
 8392
 965
 135
 123
 41

 ✔
 XL
 A++
 A
 14
 8473
 1610
 134
 114
 41

 104
 149
 105
 130
 58

 105
 152
 105
 130
 58

 104
 149
 104
 130
 58

 104
 149
 104
 130
 58

 ✔
 L
 A++
 A+
 14
 6517
 965
 175
 123
 41

 ✔
 L
 A+++
 A+
 14
 6437
 965
 177
 123
 41

 ✔
 L
 A+++
 A
 14
 6437
 965
 177
 123
 41

 ✔
 XL
 A+++
 A
 14
 6517
 1610
 175
 114
 41

 ✔
 XL
 A+++
 A
 14
 6517
 1610
 175
 114
 41
 EHST20D-14 14 12867 4934 1070 888 14 14 10275 3407 888 131 217 105 130 58 1070
 14
 14
 12819
 4837
 1070
 888

 14
 14
 12867
 4934
 1755
 1434

 14
 14
 10226
 3310
 1070
 888
 132
 223
 105
 130
 58

 14
 14
 10226
 3310
 1070
 888
 132
 223
 105
 130
 58

 14
 14
 10275
 3407
 1755
 1434
 131
 217
 104
 130
 58
 RST20D-* UZ-SWM140YAA ST30D-* ERST30D-* ✓ XL A++ A 14 8392 1610 135 114 41 14 14 12819 4837 1755 1434 105 152 104 130 58 ✓ XL A+++ A 14 6437 1610 177 114 41 14 14 10226 3310 1755 1434 132 223 104 130 58
 1980
 1060
 846

 1914
 1060
 846

 6
 2655
 880

 6
 2600
 880

 846
 138
 220
 105
 135

 846
 139
 231
 105
 135
 EHST17D-****[ERST17D-****[* A+ 6 A+ 6 880 129 880 131 134 134 6 6 4993 6 6 4960
 115
 159
 105
 135
 54

 116
 165
 105
 135
 54
 L A+++ A+ L A+++ A+ 184 134 188 134
 6
 4202
 1437

 6
 4168
 1371
 1060 1060 3761 3706 41 41 × × 41 6 6 54 54 A++ 41 L
 898
 129
 134

 898
 131
 134

 1404
 129
 133
 1980 1044 841 109 139 54 6 6 4202 1437 1044 841 138 220 109 139 54 EHST20D-* L A++ A+ 6 3761 41 6 6 4993 115 159 ✓ L A+++ A+ 6 2655 898 184 134 41 UZ-SHWM60VA4 A+ 6 A+ 6 6 6 4960 6 6 4993
 1914
 1044
 841

 1980
 1650
 1232

 116
 165
 109
 139
 54

 115
 159
 111
 155
 54
 * * L A+++ A+ 6 2600 898 XL A+++ A+ 6 2655 1404
 6
 4168
 1371

 6
 4202
 1437

 1044
 841
 139
 231
 109
 139

 1650
 1232
 138
 220
 111
 155
 ✓ L ✓ XL 188 134 184 133 6 6 ERST20D-**** A++ 3706 41 41 54 54 ST30D-' 1914 1650 1232 116 165 111 155 54 6 2600 1404 188 133 ERST30D-🖌 XL A++ A+ 6 3706 1404 131 133 41 6 6 4960 ✓ XL A+++ A+ 41 6 6 4168 1371 1650 1232 139 231 111 155 54
 A+
 8
 4904

 A+
 8
 4849

 A+
 8
 4804

 880
 132
 134

 880
 133
 134

 898
 132
 134
 8 8 6705 8 8 6672
 2521
 1060
 846

 2454
 1060
 846

 2521
 1044
 841

 115
 167
 105
 135
 54

 115
 171
 105
 135
 54

 115
 167
 109
 139
 54
 * * *
 L
 A+++
 A+
 B
 3530
 Ref
 160
 100

 L
 A+++
 A+
 B
 3530
 880
 184
 134

 L
 A+++
 A+
 B
 3530
 898
 184
 134

 L
 A+++
 A+
 B
 3530
 898
 184
 134

 8
 8
 529
 1874
 1060
 846
 146
 225
 105
 135
 54

 8
 8
 5266
 1808
 1060
 846
 147
 233
 105
 135
 54

 8
 8
 5299
 1874
 1044
 841
 146
 225
 109
 139
 54
 EHST17D-**** ERST17D-**** ~ A++ 41 41 41 L 8 8 6705 ~ 41 EHST20D-*** L A++ 41 UZ-SHWM80VAA A+ 8 A+ 8 115 171 115 167
 109
 139
 54

 111
 155
 54
 L A+++ A+ XL A+++ A+
 8
 8
 5266
 1808
 1044
 841
 147
 233
 109
 139
 54

 8
 8
 5299
 1874
 1650
 1232
 146
 225
 111
 155
 54

 8
 8
 5266
 1808
 1650
 1232
 147
 233
 111
 155
 54
 RST20D-*** ~ 4849 898 133 134 41 6672 2454 1044 841 8 3475 898 187 134 41 L A++ 8 8 ~ ✓ XL A+++ A+ 8 3530 1404 184 133
 ✓ XL A+++ A+ 8 3475 1404 187 133 1650

 For low-temperature application

 9
 13
 15
 16
 21

at output onditions

energy climate

. output viditions space h under ci

22 17 18 25

4

space

6 8 11

nergy limate

pace

Mitsubishi Electric Erp Directive Related Product Information: erp.mitsubishielectric.eu/erp PRODUCT FICHE Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals This information is based on EU regulation No 811/2013 and No 813/2013.

nergy dimate

space

Inder

space

 6
 8
 11
 9
 13
 15
 16
 21
 22
 17
 18
 25

at output pnditions output ditions g energy climate

heatin colder

space

DG79A02MH01

1.SPACE HEATER

Init

Outdoc

unit

Indoor I

HST30D-*

RST30D-

EHST17D-***

ERST20D-****

ST30D-

RST17D-HST20D-**

UZ-SHWM80YAA

XL

🖌 XL

4904

 ✓
 L
 A++
 A+
 8
 4941
 880
 131
 134
 41

 ✓
 L
 A++
 A+
 8
 4860
 880
 133
 134
 41

 ✓
 L
 A++
 A+
 8
 4941
 88
 131
 134
 41

 ✓
 L
 A++
 A+
 8
 4961
 898
 131
 134
 41

 ✓
 L
 A++
 A+
 8
 4960
 898
 133
 134
 41

 ✓
 XL
 A++
 A+
 8
 4941
 1404
 131
 133
 41

 ✓
 XL
 A++
 A+
 8
 4860
 1404
 133
 133
 41

A++ A+ 8 4849

1404 132

133

1404 133 133 41

8 8 6705

8 8 6672

8 8 6689 8 8 6737

2521

2454 1650 1232

 8
 8
 6737
 2521
 1060
 846
 114
 167
 105
 135
 54

 8
 8
 6689
 2454
 1060
 846
 114
 167
 105
 135
 54

 8
 8
 6689
 2454
 1060
 846
 114
 167
 105
 135
 54

 8
 8
 6689
 2454
 1044
 841
 115
 171
 105
 135
 54

 8
 8
 6689
 2454
 1044
 841
 115
 171
 109
 139
 54

 8
 8
 6737
 2521
 1650
 1232
 114
 167
 111
 155
 54

 8
 8
 6689
 2454
 1650
 1232
 115
 171
 111
 155
 54

	EHST20D-****D	~	L A+	++	A+ 10	59	36 8	98	136	134 41	-	10	10	8272	3204	1044	841	116	164	109	139	58	~	L .	A+++	A+ 1	0 4444	898	183	134	41	- 10	10	6480	2233	1044	841	149	236	109	139	58
PUZ-SHWM100VAA	ERST20D-****D	~	L A+	++	A+ 10	58	81 8	98	138	134 41	-	10	10	8239	3138	1044	841	117	167	109	139	58	~	L .	4 +++	A+ 1	0 4389	898	185	134	41	- 10	10	6447	2167	1044	841	150	244	109	139	58
PUZ-SHVVM100VAA	EHST30D-****D	~	XL A+	++	A+ 10	59	36 14	404	136	133 41	-	10	10	8272	3204	1650	1232	116	164	111	155	58	~	XL .	Q+++	A+ 1	0 4444	1404	183	133	41	- 10	10	6480	2233	1650	1232	149	236	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 10	58	81 14	404	138	133 41	-	10	10	8239	3138	1650	1232	117	167	111	155	58	~	XL .	A+++	A+ 1	0 4389	1404	185	133	41	- 10	10	6447	2167	1650	1232	150	244	111	155	58
	EHST20D-****D	~	L A+	++	A+ 10	59	72 8	98	135	134 41	-	10	10	8298	3246	1044	841	116	162	109	139	58	~	L.	Q+++	A+ 1	0 4480	898	181	134	41	- 10	10	6508	2276	1044	841	149	232	109	139	58
	ERST20D-****D	~	L A+	++	A+ 10	58	91 8	98	137 '	134 41	-	10	10	8250	3149	1044	841	117	167	109	139	58	~	L.	4 +++	A+ 1	0 4399	898	185	134	41	- 10	10	6459	2179	1044	841	150	242	109	139	58
PUZ-SHWM100YAA	EHST30D-****D	~	XL A+	++	A+ 10	59	72 14	404	135 *	133 41	-	10	10	8298	3246	1650	1232	116	162	111	155	58	~	XL .	Q+++	A+ 1	0 4480	1404	181	133	41	- 10	10	6508	2276	1650	1232	149	232	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 10	58	91 14	404	137 '	133 41	-	10	10	8250	3149	1650	1232	117	167	111	155	58	~	XL .	A+++	A+ 1	0 4399	1404	185	133	41	- 10	10	6459	2179	1650	1232	150	242	111	155	58
	EHST20D-****D	~	L A+	++	A+ 12	71	69 8	98	136	134 41	-	12	12	9902	3952	1044	841	117	161	109	139	58	~	L.	4+++	A+ 1	2 5481	898	179	134	41	- 12	12	7843	2753	1044	841	149	232	109	139	58
	ERST20D-****D	~	L A+	++	A+ 12	71	14 8	98	138	134 41	-	12	12	9869	3886	1044	841	118	163	109	139	58	~	L.	A+++	A+ 1	2 5426	898	181	134	41	- 12	12	7810	2687	1044	841	150	238	109	139	58
PUZ-SHWM120VAA	EHST30D-****D	~	XL A+	++	A+ 12	71	69 14	404	136	133 41	-	12	12	9902	3952	1650	1232	117	161	111	155	58	~	XL .	A+++	A+ 1	2 5481	1404	179	133	41	- 12	12	7843	2753	1650	1232	149	232	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 12	71	14 14	404	138	133 41	-	12	12	9869	3886	1650	1232	118	163	111	155	58	~	XL .	Q+++	A+ 1	2 5426	1404	181	133	41	- 12	12	7810	2687	1650	1232	150	238	111	155	58
	EHST20D-****D	~	L A+	++	A+ 12	72	04 8	98	136	134 41	-	12	12	9927	3995	1044	841	117	159	109	139	58	~	L.	4+++	A+ 1	2 5516	898	178	134	41	- 12	12	7868	2793	1044	841	149	228	109	139	58
	ERST20D-****D	~	L A+	++	A+ 12	71	23 8	98	137	134 41	-	12	12	9878	3898	1044	841	118	163	109	139	58	~	L.	4+++	A+ 1	2 5435	898	181	134	41	- 12	12	7819	2696	1044	841	150	237	109	139	58
PUZ-SHWM120YAA	EHST30D-****D	~	XL A+	++	A+ 12	72	04 14	404	136	133 41	-	12	12	9927	3995	1650	1232	117	159	111	155	58	~	XL .	4+++	A+ 1	2 5516	1404	178	133	41	- 12	12	7868	2793	1650	1232	149	228	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 12	71:	23 14	404	137 *	133 41	-	12	12	9878	3898	1650	1232	118	163	111	155	58	~	XL .	4+++	A+ 1	2 5435	1404	181	133	41	- 12	12	7819	2696	1650	1232	150	237	111	155	58
	EHST20D-****D	~	L A+	++	A+ 14	80	21 9	65	141	123 41	-	14	14	11650	4715	1070	888	115	156	105	130	58	~	L.	Q+++	A+ 1	4 6227	965	183	123	41	- 14	14	8841	3279	1070	888	153	225	105	130	58
	ERST20D-****D	~	L A+	++	A+ 14	79	65 9	65	142	123 41	-	14	14	11617	4649	1070	888	116	158	105	130	58	~	L.	A+++	A+ 1	4 6172	965	184	123	41	- 14	14	8807	3212	1070	888	154	230	105	130	58
PUZ-SHWM140VAA	EHST30D-****D	~	XL A+	++	A 14	80	21 10	610	141	114 41	-	14	14	11650	4715	1755	1434	115	156	104	130	58	~	XL .	Q+++	A 1	4 6227	1610	183	114	41	- 14	14	8841	3279	1755	1434	153	225	104	130	58
	ERST30D-****D	~	XL A+	++	A 14	79	65 16	610	142	114 41	-	14	14	11617	4649	1755	1434	116	158	104	130	58	~	XL	4+++	A 1	4 6172	1610	184	114	41	- 14	14	8807	3212	1755	1434	154	230	104	130	58
	EHST20D-****D	~	L A+	++	A+ 14	80	55 9	65	141	123 41	-	14	14	11674	4757	1070	888	115	154	105	130	58	~	L.	Q+++	A+ 1	4 6262	965	182	123	41	- 14	14	8865	3319	1070	888	153	222	105	130	58
	ERST20D-****D	~	L A+	++	A+ 14	79	74 9	65	142 .	123 41	-	14	14	11625	4659	1070	888	116	158	105	130	58	~	L.	4+++	A+ 1	4 6181	965	184	123	41	- 14	14	8816	3222	1070	888	154	229	105	130	58
PUZ-SHWM140YAA	EHST30D-****D	~	XL A+	++	A 14	80	55 16	610	141	114 41	-	14	14	11674	4757	1755	1434	115	154	104	130	58	~	XL .	Q+++	A 1	4 6262	1610	182	114	41	- 14	14	8865	3319	1755	1434	153	222	104	130	58
	ERST30D-****D	~	XL A+	++	A 14	79	74 16	610	142	114 41	-	14	14	11625	4659	1755	1434	116	158	104	130	58	~	XL	Q+++	A 1	4 6181	1610	184	114	41	- 14	14	8816		1755	1434	154	229	104	130	58

115 171 111 155 54

41

 8
 8
 5332
 1874
 1060
 846
 145
 225
 105
 135
 54

 8
 8
 5284
 1808
 1060
 846
 146
 233
 105
 135
 54

 8
 8
 5332
 1874
 1044
 841
 145
 225
 109
 139
 54

 8
 8
 5284
 1808
 1044
 841
 146
 233
 109
 139
 54

54 54

 8
 8
 532
 1874
 1650
 1232
 145
 223
 109
 135

 8
 8
 5332
 1874
 1650
 1232
 145
 225
 111
 155

 8
 8
 5284
 1808
 1650
 1232
 146
 233
 111
 155

 8
 8
 5284
 1808

 8
 8
 5332
 1874

8

 ✓
 L
 A+++
 A+
 8
 3568
 880
 182
 134
 41

 ✓
 L
 A+++
 A+
 8
 3487
 880
 187
 134
 41

 ✓
 L
 A+++
 A+
 8
 3487
 880
 187
 134
 41

 ✓
 L
 A+++
 A+
 8
 3568
 898
 182
 134
 41

 L
 A+++
 A+
 B
 3487
 898
 187
 134
 41

 ✓
 XL
 A+++
 A+
 B
 3568
 1404
 182
 133
 41

 ✓
 XL
 A+++
 A+
 B
 3487
 1404
 182
 133
 41

C)
G)
1	1
3	Ś
Ī	>
Ć	>
Ň	5
<	-
=	2
C	
_	2

Construction Construction<	English Rederlands suomi 1 Duideoor unit	Deutsch Svenska Čeština Außengerät	Français Dansk Български Unité exterieure
	Ulterunit Ulkoyksikkö	Venkovní jednotka	Udenders enhed BъHumdors nne
Name Name <th< td=""><td>binnenu Sisävks</td><td>Inonhusenhet Inonhusenhet Voikis i sokoko</td><td>Indendors enhed</td></th<>	binnenu Sisävks	Inonhusenhet Inonhusenhet Voikis i sokoko	Indendors enhed
	Sussy same Medium-temperature application Medium-temperature application	Mitellemperaturanwendung modium/angenaturanwil/ation	l'application à moyenne température Invivéntemente annovemente température
Constrained SectionConstrained 	keski	menunnemperaturappinatuun stredněteplotní aplikace	плисиетилиритациталититисизет среднотемпературното приложение
NumberConstruction <th< td=""><td>Low-</td><td>Niedertemperaturanwendung lågtemperaturapplikation</td><td>l'application à basse température lavtemperaturanvendelsen</td></th<>	Low-	Niedertemperaturanwendung lågtemperaturapplikation	l'application à basse température lavtemperaturanvendelsen
Description	mata	nizkoteplotni aplikace Anorodonaa I astronfi	9 4
Neuronal and any and a subject of the subje	Opg	Angegebenes Lastprofi Deklarerad belastningsprofil	우오
Control Control <t< td=""><td>Ilmo</td><td>Deklarovaný zátěžový profil Jih Monora filr ríla ishrasozliharlinnta Raumhaizunne.Enarrilaaffizianz</td><td>Обявен товаров профил In Alaron Afafficanita Anarvátivula saiconniàra, nour la chauffane des locaux</td></t<>	Ilmo	Deklarovaný zátěžový profil Jih Monora filr ríla ishrasozliharlinnta Raumhaizunne.Enarrilaaffizianz	Обявен товаров профил In Alaron Afafficanita Anarvátivula saiconniàra, nour la chauffane des locaux
Construction End of a constrution End o	de seizoensg	die Klasse nur die Jahreszeittedingte kaummerzungs-Energieerinzenz säsongsrelaterade energieffektivitetsklass vid rumsuppvärmning	la classe d'emcacite energetique saisonniere, pour le criauriage ues iucaux klassen for årsvirkningsgrad ved rumopvarmning
Barter de Bar	tilalämmityks Water heatin	3 0	класът на сезонната отоплителна енергийна ефективност la rlasse rl'efficacité énercéticue. cour le chaufface de l'eau
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>	de energie-et	energieffektivitetsklass vid vattenuppvärmning	- arsvirkningsgrad ved vandopvarmning
Bern Reserved Subjects Bern Reserved Subjects<	vedenlä Rated h	třída energetické účinnosti ohřevu vody die Wärmenennleistung bei durchschnittlichen Klimaverhältnissen	енергийната ефективност при подгряване ce thermique nominale dans les conditions cli
Construction Construction<	de nominale warmteafgifte(onder gemiddelde klimaat	Den nominella avgivna värmeeffekten(under genomsnittliga klimatförhållanden)	elle nytteeffekt(under gennemsnitlige klimafo
Number Number<	inmasto-olosunte	vykon(za prumernych kiimatickych podminek) ing, den jährlichen Energieverbrauch bei durchschnittlichen Klim	ата топлинна мощност(при средни климатични условия) uffage des locaux, la consommation annuelle d'énergie(dans
Numerical (No. 1) Contrast (No. 1) <thcontrast (no.="" 1)<="" th=""> <thcontrast (no.="" 1)<="" <="" td=""><td>voor niimtevenvarmino het iaarliikse energieverbruik(onder gemiddelde</td><td>suppyärmning ärlig energiförbri kning/vid genomsnittling klimatförbållande</td><td>s moyennes) armning det årlige energiforbrug(under gennemsnitlige klimaf</td></thcontrast></thcontrast>	voor niimtevenvarmino het iaarliikse energieverbruik(onder gemiddelde	suppyärmning ärlig energiförbri kning/vid genomsnittling klimatförbållande	s moyennes) armning det årlige energiforbrug(under gennemsnitlige klimaf
Name Name <th< td=""><td>voor iumiteveri wainimis, iret jaanijkse energijeveruruik(viriver germuuerve klimaatomstandigheden) viria materia gebeden</td><td>supprentiming, and energinoronaning via genoritoritoritaria.</td><td>runiopvaniming aat aninga anarginon nagumara gammananiminga kiintaron noon)</td></th<>	voor iumiteveri wainimis, iret jaanijkse energijeveruruik(viriver germuuerve klimaatomstandigheden) viria materia gebeden	supprentiming, and energinoronaning via genoritoritoritaria.	runiopvaniming aat aninga anarginon nagumara gammananiminga kiintaron noon)
Sector Sector<	skimääräisissä ilmasto-olosuhteissa)	roční spotřeba energie za průměrných klima	отопление, годишното потребление на енергия(при средни климатични условия)
Numery of weight weig	annual electricity consumption under average climate conditions	für die Warmwasserbereitung, den jährlichen Stromverbrauch bei durchschnittlichen Klimaverhältnissen	ur le chauffage de l'eau, la consommation annuelle d'électricité(dans les conditions natiques moyennes)
Construction </td <td>voor waterverwarming, het jaarlijkse elektriciteitsverbruik(onder gemiddelde klimaatomstandicheden)</td> <td>ärmning, årlig elförbruknir</td> <td>vandopvarmning det</td>	voor waterverwarming, het jaarlijkse elektriciteitsverbruik(onder gemiddelde klimaatomstandicheden)	ärmning, årlig elförbruknir	vandopvarmning det
Constrained by any direct years of priority for any opping	mmaatomasamagineaan) vedenlänmityksestä vuotuinen sähkönkulutus(keskimääräisissä ilmasto-olosuhteissa)	ohřev vody – roční spotřeba elektrické energie za	за подгряване на вода, годишното потребление(при средни климатични условия)
Construction </td <td></td> <td>jahreszeitbedingte Raumheizungs-Energieeffizienz bei durchschnittlichen Klima</td> <td>ve saisonnière pour le chauffage des locaux(dans les</td>		jahreszeitbedingte Raumheizungs-Energieeffizienz bei durchschnittlichen Klima	ve saisonnière pour le chauffage des locaux(dans les
NetworkAnd service of a service	de seizoensgebonden energie-efficiëntie voor ruimteverwarming(onder	medelverkningsgrad för rumsuppvärmning(vid genomsnittliga klimatförhållar	es) ved rumopvarmning(under gennemsnitlige klimaforhold)
Operation Operation <t< td=""><td>klimaatomstandigheden) tilalämmityksen kausittainen energiatehokkuus(keskimääräisissä ilm</td><td>nnost vytápění za průměrných klimatických podmínek</td><td>на ефективност при отопление(при средни климатични условия)</td></t<>	klimaatomstandigheden) tilalämmityksen kausittainen energiatehokkuus(keskimääräisissä ilm	nnost vytápění za průměrných klimatických podmínek	на ефективност при отопление(при средни климатични условия)
Canada a dialong a manung a dialong and dialong and dialong and a dialong and dialong and a dialong and d	Water heating energy efficiency under average climate conditions	asserbereitungs-Energieeffizienz bei	pour le chauffage de l'eau(dans les conditions climatiques
Cardinal cardi	0	iing(vid genomsnittliga klimatförh	iteten ved vandopvarmning(under gennemsnitlige kli
Description of the property of the pro	<	průměrných klimatických podmír	ефективност при подгряване на вода(при средни климатични услов
But And Constraint Service But Service Service But Service Service But Service Service But Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Servic	Sound power level L _{WA} indoor	der Schallleistungspegel L _{WA} , in Gebäuden	le niveau de puissance acoustique L wa , à l'intérieur
Marcine unity on an environmentBuild and selection belonging in the selection	13 het geluidsvermogensniveau L _{WA} binnen äänitehotaso L _{WA} sisällä	Ljudeftektnivá L _{WA} i inomhus hladina akustického výkonu L _{WA} ve vniťňním prostoru	lydeffektniveauet L _{WA} i inde нивото на звуковата мощност L _{WA} на закрито
Burger and Labor. Many and Burger and Labor. Since and	Work only during off-peak hours	dass ein ausschließlicher Betrieb des Kombiheizgerätes zu Schwachlastzeiten	fonctionner qu'en heures creuses
Balance and and an and a series of an analysis of an analy	14 werken utsluttend in de daluren toimimaan ainoastaan kulutushuippujen ulkopuolella	drīvas uteslutande under perioder med lag belastning provozu pouze mimo špičku	Tungere uden tor spidsbelastningsperioder работи само в часовете извън върховото натоварване
Citery and with a binary balance from an under the second of the seco	Rated heat output under colder climate conditions 15 Ide nominale warmteafgifte, onder koudere klimaatomstandigheden	die Wärmenennleistung bei kälteren Klimaverhältnissen Nominell avgiven värmeeffekt vid kallare klimatförhållanden	la puissance thermique nominale, dans les conditions climatiques plus froides den nominelle nytteeffekt under koldere klimaforhold
Constraint Constra	nimellislämpöteho, kylmissä	chladnějších klimati	номиналната топлинна мощност при по-студени климатични усповия la ruissance therminue nominale dance les conditions climaticues plus chaudes
Construction Construction<	de nominale warmteafgifte,	ekt vid varmare klima	lia puissance mermique nominale, dans les conditions climatiques plus chaudes den nominelle nytteeffekt under varmere klimaforhold
number of a number	nimellislämpöteho, lämpimissä ilmasto-olosuhteissa Eor space heating annual energy consumption under colder clin	výkon za teplejších klimatických podmínek una der išbrliche Energieverbrauch hei kálteren Klimaverbá	та топлинна мощност при по-топли климатични условия #ало des locality. la consommation annuelle d'énercie, dans les
converte converte converte supercharance superchara	· · · · · · · · · · · · · · · · · · ·		plus froides
Instrume Instrum Instrume Instrume	voor runnieverwanning, net jaariijkse energieverbruik onber klimaatomstandigheden		aer suide eireidiioi nind midei kondere viimaionnoid
For proor handly, a mult energy consumption under warmer dinate conditions End of a family and under grant dinate conditions	tilalämmityksestä vuotuinen energiankulutus kylmissä ilmasto-olosuhteissa		эние, годишното потребление на енергия при по-студени климатични услови
Curr universandEdit number of a number of	rgy consumption under warmer cl	umheizung, der jährliche Energieverbrauch bei wärmeren Klimaverhältnissen	ffage des locaux, la consommation annuelle d'énergie, dans les conditions
Immune membranden intermentational investigation	voor ruimteverwarming, het jaarlijkse energieverbruik on	uppvärmning, årlig energiförbrukning under varmare klimatförhållanden	mning det årlige energiforbrug under varmere klimaforhold
Event where heading, annual energy consumption under coder of meter condroms End devention an under of electricity, dans he condroms End devention an under of elect	tilal	ápění – roční spotřeba energie za teplejších klimatických podmínek	е, годишното потребление на енергия при по-топли климатични условия
Non-vene-venering: het jaarlike eelkrichekverbrak onder kondere Instance	For water heating, annual energy consumption under colder climate conditions	Warmwasserbereitung, der jährliche	e l'eau, la consommation annuelle d'électricité, dans les conditions
Instrumentangingenin Instrumen	voor waterverv	ssen vattenuppvärmning, årlig elförbrukning	g det årlige elforbrug under koldere klimaforhold
Construction Constructin Construction Construction </td <td>klimaatomstandigheden vedenlämmitvksestä vuotuinen sähkönkulutus kvimissä ilmasto-olosu</td> <td>vodv – roční spotřeba elektrické energie za chladnějších klimati</td> <td>вода, годишното потребление на електроенергия при по-студени кл</td>	klimaatomstandigheden vedenlämmitvksestä vuotuinen sähkönkulutus kvimissä ilmasto-olosu	vodv – roční spotřeba elektrické energie za chladnějších klimati	вода, годишното потребление на електроенергия при по-студени кл
Name Instant I	nergy consumption under warmer climate	rmwasserbereitung, der jährliche Stromverbrauch bei wärmeren	ни условия ни условия chauffage de l'eau, la consommation annuelle d'électricité, dans les conditions
Non-waterwarming, nig annyce eventroeleswarming, ang entrochung under ramae eunancen For vanouvparming, ang entrochung under roma For vanouvparming, our any eunancen For vanouvparming, ang entrochung under roma For vanouvparming, ang entrochung under roma Final experimentation valuesianitandy eventy Bio ontrov voly – rochi spittiba eketrick energie zi aplejisch Minalds/ch podmink anauvpaeue augu, nyauworo norpdineue e auserpoeupara nyn romoro nu mid wudi eketrick energie zi aplejisch Minalds/ch podmink anauvpaeue augu, nyauworo norpdineue e auserpoeupara nyn romoro nu mid wudi eketrick energie zi aplejisch Minalds/ch podmink anauvpaeue augu, nyauworo norpdineue e auserpoeupara nyn romoro nu mid eketrick energie zi aplejisch Minalds/ch podmink remazination remazination valuennityksesi Bio portex volue Sasongara dektrick energie zi aplejisch Minalds/ch podmink remazination remazination remazination remazination valuen national spoce haaling energie efficientie voor uninegia how winniss Ge azonal energie ficientie voor unineer final conditions Sasongara dektrick energie citica auserpoeupara nyn romoro voluen energie ficiencie energie ficiencie voluence nyn romoro voluence nyn	i oi wara i realing, annuar ana gy consumption unior wanner unnaa conutions voor waterverwarning het iaarliikes elektriciteiteverhnik onder warmere	annwasserberending, der Jannindre Onornverbra	natiques plus chaudes vandonvarmning det årlige elfo
wdenilimmitykastä wuluinen sähkörikuluus lämpinisal innasto-olsuhteisapro ohiev vody - notri spotfeba elektride energie za teplejäch kimalickych podminekan narpmaene ne spat, namunoro norpeforeme energiene on podraze nergiene on podraze neregiene on po	voor waterverwarming, net jaarlijkse elektriciteitsverbruik onder warmere klimaatomstandigheden	huppvarmning, arlig eltorbrukning under varma	vandopvarmning det arlige elfororug under varmere klimatorhold
Seasonal space hading energy efficiency under coder climate conditions de jahreszeibednege Effizientis voor ruintevervarming onder koudere Bisangsmedie/koude Ferdige effizientis voor ruintevervarming onder koudere Ferdige effizientis voor ruintevervarming onder koudere konder koudere koud	vedenlämmityksestä vuotuinen sähkönkulutus lämpimissä ilmasto-olosuhteissa	ohřev vody – roční spotřeba elektrické energie za teplejších klimatických podmír	зане на вода, годишното потребление на електроенергия при по-топли клим повия
Geschenzigsborden erergierficiente voor uninterververming onder koudere Sisongsmedelverkningsgreid for rumsupprämming under kalare klimatichallanden ensisteringsgreiden verzingsgreiden verzingereiden verzingsgreiden verzingsgreiden verzingerzing	Seasonal space heating energy efficiency under colder climate conditions	dingte Raumheizungs-Energieeffizienz bei kälteren Klimaverhältnis:	énergétique saisonnière pour le chauffage des locaux, dans les conditions
Image: Instance Sezonni energieticki účinnost vylapeni za chladnějšich klimatických podmínek Cesonera enerpieticki energieticki v protene npm no-cryzem vrumare vruma voroem klimatorich podmínek Cesonera enerpieticki v protene npm no-cryzem vrumare Inflienza energietica sag Ge seconeragebonden energie efficiente voor rulmitevervarming onder varmere Gis porgsmedelverkningsgrad für rumsupprämning under varmare klimatoristanden Feficacité énergiétics pour le chauffage des locaux, dans les conditions Feficienza energiética do Valar heating energy efficiency under colder climate conditions Gis porgsmedelverkningsgrad für rumsupprämning under varmare klimatoristanden Aeriknalogsgraden ved rumpovarming under varmere klimatoristanden Aeriknal energietica di klimatickych podminek Ceonergietica di klimatoristanden Aeriknal energietica di klimatoristanden Aeriknale energietica energietica di klimatoristanden Aeriknale energietica di klimatoristanden Aeriknale energietica di klimatori klimatori klimatori klimatori klimatori klimato	de seizoensgebonden energie-efficiëntie voor ruimteverwarming onder	smedelverkningsgrad för rumsuppvärmni	ved rumopvarmnir
Seasonal space heating energy efficiency under warmer climate conditions de jahreszeitbedingte Raumheizungs-Energieeffizienz bei wärmeren Klimaverhälnissen Fefficacité energietue saisonnière pour le chauffage des locaux, dans les conditions Fefficacité energietues de seizoensgebonden energie-efficientle voor ruimteverwarming onder warmere Säsongsmedelverkningsgrad för rumsupprämming under varmare klimatförhållanden Fefficacité energietues Caudes Ca	kiiritadorristarituigriederi tilalämmityksen kausittainen energiatehokkuus kylmissä ilmasto-olost	nost vytápění za chladnějších klimatických	енергийна ефективност при отопление при по-студени климатични условия
escoresignedclimatiques plus chardesclimatiques plus chardes	mer climate	jahreszelthedinate Raumheizrungs-Energieeffizienz hei wärmeren Klimaverhältniss	ue saisonnière nour le chauffane des locaux dans les conditions
de selzcensgebonden energie-efficientie voor ruimteverwarming onder warmere Sasongsmedelverkningsgrad für rumsupprämming under varmare klimatförhållanden årsvirkningsgraden ved rumspvarming under varmere klimatforhold A eficieria energietica do tillamatomstandigheden sezonni energietick úcinnost vytapéni za teplejšich klimatických podminek cesonwar eseptiva do geno	Seasonal space heating energy efficiency under warmer climate conditions	jahreszeitbedingte Raumheizungs-Energieettizienz bei warmeren Klimaverhaltniss	ue saisonnière pour le chautfage des locaux, dans les conditions audes
Natistationen energiatehokkus lämpinissä ilmasto-olosuhteissa sezonni energetick ücinnost vytäpěni za teplejšich klimatických podmínek cesonhara eneprviha edekrivehocr npv oronnenve npv no-ronnv krivmatriveh ycnoeva sezonova elektywność en Vater heating energie-efficiéntie voor waterverwarming onder koudere klimaatomstandigheden Genergiefficienz bei kälteren Klimaverhältnissen I efficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus I efficienza energetica di redise Vater heating energie-efficiéntie voor waterverwarming onder koudere klimaatomstandigheden Energiefficienz bei vainnost ohrevu vody za chladnějšich klimatických podmínek I energiefficientie ved vandoprarmning under koldere klimatorny morornyee va sopa npo-cryzee krivnekocr npv nogrpase va sopa npv no-cryzee krivnekocr npv nogrpase va sopa npv no-crvnev krivnekocr energietica do craudes varinde var	klir de	medelverkningsgrad för rumsuppvärmning under varmare klimatförhållan	ved rumopvarmning under varmere klimaforhold
Water heating energy efficiency under colder climate conditions die Warnwasserbereitungs-Energieeffizienz bei kälteren Klimaverhältnissen reficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus reficienz energetica di ré de energie-efficientle voor waterverwarning onder koudere klimaatomstandigheden Energieffektivitet vid vatteruppvärmning under kallare klimatforhållanden energiefektivitet vid vatteruppvärmning under kallare klimatforhållanden energiefektivitet vid vatteruppvärmning under kallare klimatforhållanden energiefektivitet vid varterververververververververververververve	tilalämmityksen kausittainen energiatehokkuus lämpimissä ilmasto-olosuhteissa	energetická účinnost vytápění za teplejších klim	енергийна ефективност при отопление при по-топли климатични усл
de energie-efficiêntie voor waterverwarming onder koudere klimaatomstandigheden Energieffektivitet vid vattenuppvärmning under kallare klimatforhållanden energiefektiviteten ved vandopvarmning under koldere klimatforhållanden energietica os vedenlämmityksen energiatehokkuus kylmissä ilmasto-olosuhteissa energieffektivitet vid vattenuppvärmning under kallare klimatforhållanden energieffektiviteten ved vandopvarmning under koldere klimatforhållanden energiefektiviteten ved vandopvarmning under koldere klimatforhållanden energiefektiviteten ved vandopvarmning under kallare klimatforhållanden energiefektiviteten ved vandopvarmning under varmer klimatforhållanden fefficienze energietica do s de energie-efficientie voor waterverwarming onder warmere klimatofugheden Energiefektivitet vid vattenuppvärmning under varmare klimatforhållanden energiefektiviteten ved vandopvarmning under varmere klimatorhold a eficiencia energietica do s vedenlämmityksen energiatehokkuus lämpimissä ilmasto-olosuhteissa Energiefektivitet vid vattenuppvärmning under varmare klimatforhållanden energiefektiviteten ved vandopvarmning under varmere klimatorhold eefktywność eneregietica do s Soun	Water heating energy efficiency under colder climate conditions	ass	pour le chauffage de l'eau, dans les conditions clim
Verdenlämmityksen energiatehokkuus kylmissä ilmasto-olosuhteissa energieticki učinnost ohfevu vody za chladnějšich klimatických podminek energieticki vod vantovenou cover vantovenou covervantovane vantovenou cover vantovenou cover vantovenou cover v			teten ved vandonvarmning under koldere klimaforhold
Water heating energy efficiency under warmer climate conditions die Warmwasserbereitungs-Energieeffizienz bei wärmeren Klimaverhältnissen Pafficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus Pafficienza energetica di ris Vater heating energy efficiency under warmer climate conditions die Warmwasserbereitungs-Energieeffizienz bei wärmeren Klimaverhältnissen Pafficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus Pafficienza energetica di ris de energie-efficientie voor waterverwarming onder warmere klimaato-olosubtiessa Energieffektivitet vid vartenuppvärmning under varmare klimatförhållanden energiefektiviteten ved vandopvarmning under varmere klimatorhold a eficiência energética do i vedenlämmit/ksen energiatehokkuus lämpimissä ilmasto-olosubteissa energetická účinnost ohřevu vody za teplejších klimatičkých podmínek energiefektiviteten ved vandopvarmning under varmere kapa npu no-ronnu knuwaruv+uv ycnoeux efektywność energetyczna Sound power level L _{WA} outdoor der Schallleistungspegel L _{WA} im Freien le niveau de puissance acoustique L _{WA} à l'extérieur il ivello di poterza sonora Net gluidsvermogensniveau L _{WA} bulten Ljudefektrivián L _{WA} i udorhuka lorvel de poténcia sonora On rivel de poténcia sonora			енен уей уапооруантный иноет консете кы эфективност при подгряване на вода при
de energie-efficiêntie voor waterverwarming onder warmere klimaatomstandigheden Energiefiektivitet vid vattenuppvärmning under varmare klimaaförhållanden energiefiektiviteten ved vandopvarmning under varmere klimatorhöld vedenlämmityksen energiatehökkuus lämpimissa ilmasto-olosuhteissa energiefiekta üčinnost ohřev vody za teplejšich klimatických podmínek energiefiektiviteten ved vandopvarmning under varmere klimatorhöld Sound power level L _{WA} outdoor der Schallleistungspegel L _{WA} im Freien energienstiveau L _{WA} butlen ka textérieur Integluidsvernogenstriveau L _{WA} butlen L_WA butlen L_WA i l'extérieur	Water heating energy efficiency under warmer climate conditions	die Warmwasserbereitungs-Energieeffizienz bei wärmeren Klimaverhältnissen	chauffage de l'eau, dans le
vedenlämmityksen energiatehokkuus lämpimissä ilmasto-olosuhteissa energetická účinnost ohřevu vody za teplejšich klimatických podmínek енергийната ефективност при подгряване на вода при по-топли климатични условия Sound power level L _{WA} outdoor der Schallleistungspegel L _{WA} im Freien le niveau de puissance acoustique L _{WA} à l'extérieur ledeluidsvermogenstriveau L _{WA} buiten L _{WA} buiten L _{WA} i Udonflue	de eneraie-	opvärmn	
Image: Sound power level L _{WA} outdoor der Schallteistungspegel L _{WA} im Freien le niveau de puissance acoustique L _{WA} à l'extérieur Sound power level L _{WA} outdoor Ljudeffektnivân L _{WA} i utomhus lydeffektnivân L _{WA} i utomhus	vedenlämmi	vody za	ефективност при подгряване на вода при по-топли климатични
het geluidsvermogensniveau L _{WA} buiten L _{WA} i ude Ljudeffektnivån L _{WA} i utomhus			-
		ien	acoustique L WA à l'extérieur

	Fenañol
	EAAŋvıká
	unidad exterior Eξωτερική μονάδα
	unidad interior Ecrumpokh μονάδα
	- la aplicación de media temperatura In εφαριμογή σε μέση θεριμοκρασία
	- la aplicación de baja temperatura η εφαρμογή σε χαμηλή θερμοκρασία
	erfil de carga declara ηλωμένο προφίλ φορ
	clase de eficiencia energética esta
	la clase de eficiencia energética estacional de calefacción η πάξη ενεργειακής απόδοσης της εποχιακής θέρμανσης χώρου -
	la clase de eficiencia energética del caldeo de agua η τάξη εντεργειακής απόδοσης θέρμανσης νερού
	 a la policia calorífica nominal(en condiciones climáticas medias) n ονομαστική θεριμική ισχύς(υπό μέσες κλιματικές συνθήκες)
imatiche	- para calentar espacios, el consumo anual de energía(en condiciones climáticas medias)
limáticas mé	ια τη θέρμανση χώρου
ach klimatu	
natiche medie)	para calentar agua, el consumo anual de electricidad(en condiciones climáticas medias)
s climáticas m warunkach	για την θέρμανση νερού, η ετήσια κατανάλωση ηλεκτρικής ενέργειας(υπό μέσες κλιματικές συνθήκες) -
limatiche	la eficiencia energética estacional de calefacción(en condiciones climáticas medias)
náticas mé	η ενεργειακή απόδοση της εποχιακής θέρμανσης χώρου(υπό μέσες κλιματικές συνθήκες)
n klimatu edie)	ficiencia energética del caldeo de aqua(en condiciones climáticas medias)
édias) owanego)	η ενεργειακή απόδοση θέρμανσης νερού(υπό μέσες κλιματικές συνθήκες) -
	el nivel de potencia acústica L _{WA} en interiores η στάθμη ηχητικής ισχύος L _{WA} εσωτερικού χώρου
	funcionar solamente durante las horas de baja demanda λεπουργία μόνο εκτός των ωρών αιχμής
	a per la policia calorífica nominal en condiciones climáticas más frías η ονομαστική θερμική ισχύς υπό ψυχρότερες κλιματικές συνθήκες
	la potencia calorífica nominal en condiciones climáticas más cálidas η ονοματική θερμική ισχύς υπό θερμότερες κλιματικές συνθήκες
limatiche più	- para calentar espacios, el consumo anual de energía en condiciones climáticas más frías
limáticas mais	για θέρμανση χώρου, η ετήσια κατανάλωση ενέργειας υπό ψυχρότερες κλιματικές συνθήκες
다	
limatiche più limáticas mais	para calentar espacios, el consumo anual de energía en condiciones climáticas más cá lidas vird Brunovn vilnou i a rrhona kornováhvon svérovara umó Broulótaner klumtkér mivBriker
atu	
matiche più	para calentar agua, el consumo anual de electricidad en condiciones climáticas más frías
s climáticas	για θέρμανση νερού, η ετήσια κατανάλωση ηλεκτρικής ενέργειας υπό ψυχρότερες κλιματικέ ς συνθήκες
warunkach matiche più	 para calentar agua, el consumo anual de electricidad en condiciones climáticas más cá
s climáticas	indas για θέρμανση νερού, η ετήσια κατανάλωση ηλεκτρικής ενέργειας υπό θερμότερες κλιματικές ισινθήκες
warunkach	
auche piu	inergenca estacional de caletacción en condiciones climaticas mas in renéferences estacional de caletacción en condiciones climaticas mas in
naticas mais n klimatu chł	- KEC I skebkenkul anuooodi LIUS suuxianki eebhavauk Xmbon nuu hmXboisebsč kwihankes anvedi -
limatiche più	eficiencia energética estacional de calefacción en condiciones climática
náticas mais n klimatu ciepł	η ενεργειακή απόδοση της εποχιακής θέρμανσης χώρου υπό θερμότερες κλιματικές συνθή κες -
ı fredde	la eficiencia energética de caldeo de agua en condiciones climáticas más frías
ais frias ego	
ı calde	eficiencia energética de caldeo de agua en condiciones climáticas má
is quentes lo	η ενεργειακή απόδοση της θέρμανσης νερού υπό θερμότερες κλιματικές συνθήκες -
	el nivel de potencia acústica L _{vin} , en exteriores η στάθμη ηχητικής ισχύος L _{vin} εξωτερικού χώρου

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	129	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor te	mperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	2. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 1	kW	Tj = + 7 ° C	COPd	4. 20	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	2. 7	kW	Tj = +12 ° C	COPd	5.87	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2.00	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2.00	-
			-				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		·	
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L_{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	3761	k₩h				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 000	k₩h				
Annual electricity consumption	AEC	880	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – Ma	anisa, Turkey
The identification and signature of th	he person	empowered	to bind th	e supplier: Kenichi SAITO			
百藤建一				Manager, Quality Assuarance Department			
M MOLT DE -				TURKEY			
Details and propertiens on installation maintance	•			installation and or operation manuals			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0.9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	184	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ten	nperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	3. 39	-
Degradation co-efficient (**)	Cdh	0.99	_				
Tj = + 2 ° C	Pdh	4.8	kW	Tj = + 2 ° C	COPd	4. 76	-
Degradation co-efficient (**)	Cdh	0.99	_				
Tj = + 7 ° C	Pdh	4.9	kW	Tj = + 7 ° C	COPd	5.90	-
Degradation co-efficient (**)	Cdh	0.98	-				
Tj = +12 ° C	Pdh	3.0	kW	Tj = +12 ° C	COPd	6. 52	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6.0	kW	Tj = bivalent temperature	COPd	2. 74	-
Tj = operation limit temperature (***)	Pdh	6.0	kW	Tj = operation limit temperature (***)	COPd	2. 74	-
			•				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q _{HE}	2655	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4.000	kWh				
Annual electricity consumption	AEC	880	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
Details and precautions on installation, maintena Details and precautions on recycling and/or dis		•		installation and or operation manuals.			

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	115	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	2. 55	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 2 ° C	Pdh	3.6	kW	Tj = + 2 ° C	COPd	3. 50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 3	kW	Tj = + 7 ° C	COPd	4.89	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3.1	kW	Tj = +12 ° C	COPd	6.89	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	4. 9	kW	Tj = bivalent temperature	COPd	1. 75	-
Tj = operation limit temperature (***)	Pdh	4. 0	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 75	-
Bivalent temperature	Tbiv	-15	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	2. 0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4993	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	105	%
Daily electricity consumption	Qelec	4. 820	kWh				
Annual electricity consumption	AEC	1060	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre - M	lanisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate ∕ mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
	,			TURKEY			
· Details and precautions on installation, maintena	nce and asse	embly can be	found in the	installation and or operation manuals.			
\cdot Details and precautions on recycling and/or dis	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Rated heat output (*) Declared capacity for heating for part	Prated						
Declared capacity for heating for part		6.0	kW	Seasonal space heating energy efficiency	η s	138	%
	load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperatu	re Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 2 ° C	Pdh	3. 8	kW	Tj = +2 ° C	COPd	4. 15	-
Degradation co-efficient (**)	Cdh	0. 98	-			<u>_</u>	
Tj = + 7 ° C	Pdh	4. 5	kW	Tj = + 7 ° C	COPd	5. 42	-
Degradation co-efficient (**)	Cdh	0. 98	-			<u>_</u>	
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	7. 56	-
Degradation co-efficient (**)	Cdh	0.96	-				
Tj = bivalent temperature	Pdh	5. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Tj = operation limit temperature (***)	Pdh	3. 1	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2. 05	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than a	active mo	de		Supplementary heater			
Off mode	P _{OFF}	0. 015	kW	Rated heat output (*)	Psup	2.9	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0. 000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L_{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	4202	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	105	%
Daily electricity consumption	Qelec	4. 820	kWh				
Annual electricity consumption	AEC	1060	kWh				
Contact details				·			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MANU	JFACTURING T	URKEY JOINT ST	OCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∶1	19 Yunusemre – M	anisa, Turkey
The identification and signature of the	person	empowered t	o bind the				
The eigneture is eigned in the everage elime	ata / madiu	m tomporatu	ra anation	Kenichi SAITO Manager, Quality Assuarance Department			
The signature is signed in the average clima	ate / meult	m - Lemperatu		TURKEY			
· Details and precautions on installation, maintenand	ce and asse	embly can be	found in the				

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	159	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ter	nperature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	6.0	kW	Tj = + 2 ° C	COPd	2. 10	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 7 ° C	Pdh	4.0	kW	Tj = + 7 ° C	COPd	3. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	4. 5	kW	Tj = +12 ° C	COPd	6.16	-
Degradation co-efficient (**)	Cdh	0.98	-			L]	
Tj = bivalent temperature	Pdh	6.0	kW	Tj = bivalent temperature	COPd	2. 10	-
Tj = operation limit temperature (***)	Pdh	6.0	kW	Tj = operation limit temperature (***)	COPd	2. 10	-
			1				
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{OFF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW			ļļ	
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	Р _{ск}	0.000	kW				
Other items			II.				
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q _{HE}	1980	kWh				
For heat pump combination heater:		1	ιι				
Declared load profile		L		Water heating energy efficiency	η wh	135	%
Daily electricity consumption	Qelec	3.850	kWh				
Annual electricity consumption	AEC	846	kWh				
Contact details			II				
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the				
The simulation is simulationally the				Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
Details and precautions on installation, maintena	ince and ass	embly can be	found in the				

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6. 0	kW	Seasonal space heating energy efficiency	ηs	220	%
Declared capacity for heating for part	: load at	indoor	•	Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor ten	perature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	6.0	kW	Tj = + 2 ° C	COPd	3.80	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 7 ° C	Pdh	4.4	kW	Tj = + 7 ° C	COPd	5. 10	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	4. 7	kW	Tj = +12 ° C	COPd	7.46	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	3.80	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	3.80	-
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		1 1	
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	1437	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	135	%
Daily electricity consumption	Qelec	3.850	kWh				
Annual electricity consumption	AEC	846	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∶	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
Details and precautions on installation, maintena				TURKEY			

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6. 0	kW	Seasonal space heating energy efficiency	η s	129	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ter	mperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	2. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 1	kW	Tj = + 7 ° C	COPd	4. 20	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	2. 7	kW	Tj = +12 ° C	COPd	5. 87	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2.00	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2.00	-
			-				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{OFF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	3761	k₩h				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 080	k₩h				
Annual electricity consumption	AEC	898	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – Ma	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind th	e supplier: Kenichi SAITO			
百藤建一				Manager, Quality Assuarance Department			
1-1 ridi b+				TURKEY			
Details and pressutions on installation maintana				installation and or approxim manuals			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0.9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	184	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	3. 39	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.8	kW	Tj = + 2 ° C	COPd	4. 76	-
Degradation co-efficient (**)	Cdh	0.99	_				
Tj = + 7 ° C	Pdh	4. 9	kW	Tj = + 7 ° C	COPd	5. 90	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3.0	kW	Tj = +12 ° C	COPd	6. 52	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2. 74	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2. 74	-
			•				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L_{WA}	41 / 54	dBA				
Annual energy consumption	Q _{HE}	2655	k₩h				
For heat pump combination heater:							
Declared load profile		L	-	Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 080	k₩h				
Annual electricity consumption	AEC	898	k₩h				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4. Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre - M	lanisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average cli 	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
Details and precautions on installation, maintena Details and precautions on recycling and/or dis				installation and or operation manuals.			

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	115	%
Declared capacity for heating for part	load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	2. 55	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	3.6	kW	Tj = + 2 ° C	COPd	3. 50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4.3	kW	Tj = + 7 ° C	COPd	4. 89	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	6.89	-
Degradation co-efficient (**)	Cdh	0.97	_				
Tj = bivalent temperature	Pdh	4. 9	kW	Tj = bivalent temperature	COPd	1. 75	-
Tj = operation limit temperature (***)	Pdh	4. 0	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 75	-
Bivalent temperature	Tbiv	-15	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	2.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4993	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	109	%
Daily electricity consumption	Qelec	4. 750	kWh				
Annual electricity consumption	AEC	1044	kWh				
Contact details				·			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	FOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∶1	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ie person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	ım-temperatu	re section	Manager, Quality Assuarance Department			
				TURKEY			
· Details and precautions on installation, maintena	nce and asso	embly can be	found in the				
· Details and precautions on recycling and/or disp	oosal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	138	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	3.8	kW	Tj = + 2 ° C	COPd	4. 15	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = + 7 ° C	Pdh	4. 5	kW	Tj = + 7 ° C	COPd	5. 42	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3.1	kW	Tj = +12 ° C	COPd	7.56	-
Degradation co-efficient (**)	Cdh	0.96	-				
Tj = bivalent temperature	Pdh	5. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Tj = operation limit temperature (***)	Pdh	3. 1	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2. 05	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de	-	Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	2.9	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable	-	Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	4202	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	109	%
Daily electricity consumption	Qelec	4. 750	kWh				
Annual electricity consumption	AEC	1044	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – N	lanisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	ım-temperatu	re section	Manager, Quality Assuarance Department			
		comportatu		TURKEY			
· Details and precautions on installation, maintena	ince and asse	embly can be	found in the	installation and or operation manuals.			
\cdot Details and precautions on recycling and/or dis	posal at end-	of-life can be	e found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Prated						
	6.0	kW	Seasonal space heating energy efficiency	η s	159	%
load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
re Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Cdh	-	-				
Pdh	6.0	kW	Tj = + 2 ° C	COPd	2. 10	-
Cdh	1.00	-				
Pdh	4.0	kW	Tj = + 7 ° C	COPd	3. 28	-
Cdh	0. 99	-				
Pdh	4. 5	kW	Tj = +12 ° C	COPd	6. 16	-
Cdh	0. 98	-				
Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2. 10	-
Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2. 10	-
Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Tdesignh	2	°C	Heating water operating limit temperature	WTOL	60	°C
active mo	de		Supplementary heater			
P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0.015	kW				
P _{SB}	0. 015	kW	Type of energy input		Electrical	
Рск	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2220	m³/h
L _{WA}	41 / 54	dBA				
Q _{HE}	1980	kWh				
	L		Water heating energy efficiency	η wh	139	%
Qelec	3.820	kWh				
AEC	841	kWh				
				lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
person	empowered t	to bind the				
te / mediu	m-temperatu	re section.	Manager, Quality Assuarance Department			
	Pdh Cdh Pdh Cdh Pdh Cdh Pdh Cdh Pdh Pdh Pdh Tbiv Tdesignh active mo Porr Pro PsB PcK LWA QHE Qelec AEC FACTURING TH person	Pdh - Cdh - Pdh 6.0 Cdh 1.00 Pdh 4.0 Cdh 0.99 Pdh 4.5 Cdh 0.99 Pdh 6.0 Pdh 0.015 Prof 0.015 PsB 0.015 PcK 0.000 variable L Qelec AEC 841 FACTURING TURKEY JOINT ST person empowered 1	Pdh - kW Cdh - - Pdh 6.0 kW Cdh 1.00 - Pdh 4.0 kW Cdh 0.99 - Pdh 4.5 kW Cdh 0.99 - Pdh 4.5 kW Cdh 0.98 - Pdh 6.0 kW Pdh 0.015 kW Pro 0.015 kW PsB 0.015 kW PcK 0.000 kW Cartiale L Qelec 3.820 At1 / 54 dBA QHE 1980 FACTURING TURKEY JOINT STOCK COMPANY person empowered to bind	Pdh-KWTj = -7 ° CCdhPdh6.0KWCdh1.00-Pdh4.0KWCdh0.99Pdh4.5KWCdh0.99Pdh4.5KWCdh0.98Pdh6.0KWPdh6.0KWTj = bivalent temperatureTbiv2° CTdesignh2 ° CTdesignh2 ° CPorr0.015KWPorr0.015KWPox0.000KWType of energy inputPox0.000KWRated air flow rate, outdoorsLKWhAEC841KWhKWhAEC841KWhKWhFACTURING TURKEY JOINT STOCK COMPANYManisa 0SB 4. Kisim Kecilikoyosh Mah. Atmet Nazif Zorperson empowered to bind the supplier:Kenichi SAITO	Pdh-KWTj = -7 ° CCOPdCdhPdh6.0KWTj = + 2 ° CCOPdCdh1.00Pdh4.0KWTj = + 7 ° CCOPdCdh0.99Pdh4.5KWTj = + 12 ° CCOPdCdh0.98Pdh6.0KWTj = bivalent temperatureCOPdTbiv2° COperation limit temperatureCOPdTbiv2° COperation limit temperatureTOLHeatingwater operating limitWTOLtemperatureSupplementary heaterPorr0.015KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWPorr0.000KWhAEC841KWhAEC841KWhFACTURING TURKEY JOINT STOCK COMPANYManisa 088 4.Kisim Kecilikoyash Mah. Annet Nazif Zorlu Bulvari No:person empowered to bind the supplier: Kenichi SAITOManager, Quality Assuarance Department TURKEYte / medium-temperature section.Manager, Quality Assuarance Department TURKEY	Pdh-KWTj = -7 ° CCOPd-Pdh6.0KWTj = + 2 ° CCOPd2.10Cdh1.00-Tj = + 7 ° CCOPd3.28Cdh0.99-Tj = + 7 ° CCOPd6.16Cdh0.99-Tj = +12 ° CCOPd6.16Cdh0.98-Tj = bivalent temperatureCOPd2.10Pdh6.0KWTj = operation limit temperatureCOPd2.10Pdh6.0KWTj = operation limit temperatureCOPd2.10Tbiv2 ° COperation limit temperatureTOL-30Tdesignh2 ° CHeating water operating limitWTOL60SupplementarybeaterSupplementaryElectricalPorr0.015KWType of energy inputElectricalPox0.000KWType of energy inputElectricalLVariableRated air flow rate, outdoors-2220Lax41 / 54dBAMWhAnisa 088 4.Kisin Kecilikoyob Meh. Amet Nazif Zarlu Bulvari No:19 Youuseere - WPoson empowered to bind thesupplier:Kenichi SAITOKenichi SAITOte / medium-temperature section.Manager, Quality Assurance DepartmentTURKEY

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

Symbol	Value	Unit	Item	Symbol	Value	Unit
Prated	6.0	kW	Seasonal space heating energy efficiency	η s	220	%
load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
ure T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Cdh	-	-				
Pdh	6.0	kW	Tj = + 2 ° C	COPd	3.80	-
Cdh	0.99	-				
Pdh	4.4	kW	Tj = + 7 ° C	COPd	5. 10	-
Cdh	0.98	-				
Pdh	4. 7	kW	Tj = +12 ° C	COPd	7.46	-
Cdh	0.98	-				
Pdh	6.0	kW	Tj = bivalent temperature	COPd	3.80	-
Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	3.80	-
		1			LJ	
Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
active mo	de	1	Supplementary heater		1	
P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0. 015	kW				
P_{SB}	0. 015	kW	Type of energy input		Electrical	
Рск	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2220	m³/h
L _{WA}	41 / 54	dBA				
Q_{HE}	1437	kWh				
			•			
	L		Water heating energy efficiency	η wh	139	%
Qelec	3. 820	kWh				
AEC	841	k₩h				
NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∶1	9 Yunusemre - Ma	anisa, Turkey
e person	empowered	to bind the				
nate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
	Prated I load at ure T j Pdh Cdh PoFF Pro Cw Cw Cw Cw Cw Cw Cw Cw Cw Cw	Prated 6.0 load at indoor indoor ure T j Pdh - Cdh - Pdh Cdh - Pdh Cdh 0.99 Pdh Pdh 4.4 O.99 Pdh 4.7 O.98 Pdh 4.7 O.98 Pdh 6.0 O.015 Pdh 0.015 P PorF 0.015 O.015 PSB 0.015 O.000 variable L Qelec 3.820 AEC 841 NUFACTURING TURKEY JOINT S e person empowered T	Prated 6.0 kW load at indoor ure T j Pdh - kW Cdh - - Pdh 6.0 kW Cdh - - Pdh 6.0 kW Cdh 0.99 - Pdh 4.4 kW Cdh 0.98 - Pdh 4.7 kW Cdh 0.98 - Pdh 6.0 kW Olit kW - Pdh 2 ° C active mode - - PorF 0.015 kW PogK 0.000 kW PogK 0.000 kW L <td>Prated6.0kWPrated6.0kWIoad at indoorenergy efficiencyure T jpdh-Pdh-KWCdhPdh6.0kWCdh0.99-Pdh4.4kWCdh0.98-Pdh4.7kWCdh0.98-Pdh6.0kWPdh6.0kWFdh4.7kWCdh0.98-Pdh6.0kWFdh2° CTbiv2° Cactive modeSuplementary heaterPorF0.015kWPorF0.015kWPorF0.000kWVariableRated air flow rate, outdoorsLWater heating energy efficiencyQelec3.820kWhAEC841KWhManisa OSB 4.Kisim Kecilikoyoeb Mah. Ahmet Nazif Zore person empowered to bind the supplier:Kenichi SAITOmate / medium-temperature section.Manager, Quality Assuarance Department</td> <td>Prated6.0kWPrated6.0kWIoad at indoorindoorPdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh4.4KWCdh0.99Pdh4.4KWCdh0.98Pdh4.7KWCdh0.98Pdh6.0KWCdh0.98Pdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPare0.015KWPare0.015KWPox0.000KWPox0.015KWPox0.000<td>Prated6.0KWIoad at indoorSeasonal epace heating energy efficiencyη s220Used at indoorDeclared coefficient of performance or primary energy ratio for per load at indoor temperature 20 °C and outdoor temperature Tj Tj = -7 °CCond ()PdhCond ()Pdh6.0KWTj = + 2 °CCond (-)CdhPdh6.0KWTj = + 7 °CCond (-)Cdh0.99Pdh4.4KWTj = + 12 °CCond (-)Cdh0.98Pdh6.0KWTj = operation limit temperatureCOPd (-)Cdh0.98Pdh6.0KWTj = operation limit temperatureCOPd (-)Rdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWTbiv2°CC-DeparationImit temperatureTOL-30Heating water operating limitWTOL60sative modeSupplementary heater-Pas0.015KW-Pas0.000KWPas0.000KWPas0.000KWQeilec3.820KWh<!--</td--></td></td>	Prated6.0kWPrated6.0kWIoad at indoorenergy efficiencyure T jpdh-Pdh-KWCdhPdh6.0kWCdh0.99-Pdh4.4kWCdh0.98-Pdh4.7kWCdh0.98-Pdh6.0kWPdh6.0kWFdh4.7kWCdh0.98-Pdh6.0kWFdh2° CTbiv2° Cactive modeSuplementary heaterPorF0.015kWPorF0.015kWPorF0.000kWVariableRated air flow rate, outdoorsLWater heating energy efficiencyQelec3.820kWhAEC841KWhManisa OSB 4.Kisim Kecilikoyoeb Mah. Ahmet Nazif Zore person empowered to bind the supplier:Kenichi SAITOmate / medium-temperature section.Manager, Quality Assuarance Department	Prated6.0kWPrated6.0kWIoad at indoorindoorPdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh-Pdh4.4KWCdh0.99Pdh4.4KWCdh0.98Pdh4.7KWCdh0.98Pdh6.0KWCdh0.98Pdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPare0.015KWPare0.015KWPox0.000KWPox0.015KWPox0.000 <td>Prated6.0KWIoad at indoorSeasonal epace heating energy efficiencyη s220Used at indoorDeclared coefficient of performance or primary energy ratio for per load at indoor temperature 20 °C and outdoor temperature Tj Tj = -7 °CCond ()PdhCond ()Pdh6.0KWTj = + 2 °CCond (-)CdhPdh6.0KWTj = + 7 °CCond (-)Cdh0.99Pdh4.4KWTj = + 12 °CCond (-)Cdh0.98Pdh6.0KWTj = operation limit temperatureCOPd (-)Cdh0.98Pdh6.0KWTj = operation limit temperatureCOPd (-)Rdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWTbiv2°CC-DeparationImit temperatureTOL-30Heating water operating limitWTOL60sative modeSupplementary heater-Pas0.015KW-Pas0.000KWPas0.000KWPas0.000KWQeilec3.820KWh<!--</td--></td>	Prated6.0KWIoad at indoorSeasonal epace heating energy efficiency η s220Used at indoorDeclared coefficient of performance or primary energy ratio for per load at indoor temperature 20 °C and outdoor temperature Tj Tj = -7 °CCond ()PdhCond ()Pdh6.0KWTj = + 2 °CCond (-)CdhPdh6.0KWTj = + 7 °CCond (-)Cdh0.99Pdh4.4KWTj = + 12 °CCond (-)Cdh0.98Pdh6.0KWTj = operation limit temperatureCOPd (-)Cdh0.98Pdh6.0KWTj = operation limit temperatureCOPd (-)Rdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWTbiv2°CC-DeparationImit temperatureTOL-30Heating water operating limitWTOL60sative modeSupplementary heater-Pas0.015KW-Pas0.000KWPas0.000KWPas0.000KWQeilec3.820KWh </td

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	131	%
Declared capacity for heating for part	t load at	indoor	1	Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 °C and	outdoor ter	nperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	2. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 1	kW	Tj = + 7 ° C	COPd	4. 20	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	2. 7	kW	Tj = +12 ° C	COPd	5. 87	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2.00	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2.00	-
			-				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	3706	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 000	k₩h				
Annual electricity consumption	AEC	880	kWh				
Contact details							<u> </u>
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – Ma	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind th				
百藤建一				Kenichi SAITO Manager, Quality Assuarance Department			
12 HOLE DE -				TURKEY			
· Dataile and proceptions on installation maintang			farmal in the	installation and or operation manuals			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Rated heat output (*)Prated6.0kWSeasonal paper Pating energy efficiency η s188Declared capacity for heating for part load at indoortemperature 20 °C and outdoor temperature T jDeclared coefficient of performance or primary energy ratio for part load at indoor temperature 20 °C and outdoor temperature T jT j = -7 °CPdh5.3kWDegradation co-efficient (**)Odh0.99-T j = +2 °CPdh4.8KWDegradation co-efficient (**)Odh0.99-T j = +7 °CPdh4.9KWDegradation co-efficient (**)Odh0.99-T j = +12 °CPdh4.9KWDegradation co-efficient (**)Odh0.97-T j = bivalent temperaturePdh6.0KWT j = operation limit temperaturePdh6.0KWT j = operation limit temperatureCOPd2.74T j = operation limit temperatureT j = 0-Bivalent temperatureT j = 0.015KWT j = operation limit temperatureT j = 0.015Power consumption in modes other than active modeSupplementary heaterOff modePar0.015Other items-Capacity controlvariableSound power level, indoors/outdoorsLCapacity controlQuelecAnnual energy consumptionQuelecAnual energy consumptionQuelecAnual energy consumptionQuelecAnual energy consumptionQuelec </th <th>Unit</th> <th>Value</th> <th>Symbol</th> <th>Item</th> <th>Unit</th> <th>Value</th> <th>Symbol</th> <th>Item</th>	Unit	Value	Symbol	Item	Unit	Value	Symbol	Item
temperature 20 ° C and outdoor temperature T jT j = -7 ° CPdh5.3KNDegradation co-efficient (**)Cdh0.99-T j = + 2 ° CPdh4.8KNDegradation co-efficient (**)Cdh0.99-T j = + 2 ° CPdh4.8KNDegradation co-efficient (**)Cdh0.99-T j = + 7 ° CPdh4.8KNDegradation co-efficient (**)Cdh0.99-T j = + 12 ° CPdh3.0KNDegradation co-efficient (**)Cdh0.97-T j = + 12 ° CPdh3.0KNDegradation co-efficient (**)Pdh6.0KNT j = bivalent temperatureCOPd2.74T j = operation limit temperaturePdh6.0KNT j = operation limit temperatureCOPd2.74T j = operation limit temperature (***)Pdh6.0KNT j = operation limit temperatureCOPd2.74T j = operation limit temperatureToL-30Power consumption in modes other than active modeSupplementary heaterOff modePower0.015Crancease heater modePox0.005Crancease heater modePox0.015Other itemsCapacity controlVariableSound power level, indoors/outdorsLas41 / 54Annual energy consumptionQelec4.000MithNeter heating energy efficiency7 whDelared lo	%	188	η s	5	kW	6.0	Prated	Rated heat output (*)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ratio for	nary energy			indoor	t load at	Declared capacity for heating for par
Degradationco-efficient (**)Cdh0.99-Tj = + 2 ° CCCOPd4.76Degradationco-efficient (**)Cdh0.99-Tj = + 7 ° CPdh4.9KWTj = + 7 ° CCOPdDegradationco-efficient (**)Cdh0.98-Tj = + 12 ° CCPdh3.0KWDegradationco-efficient (**)Cdh0.97Tj = +12 ° CPdh6.0KWTj = operationImmeraturePdh6.0KWTj = operation limit temperatureCOPd2.74Tj = operationTo immerature (***)Pdh6.0Bivalent temperatureTbiv-10° CReference design conditions for spaceTdesignh-10° CPowerConsumption in modesPdr0.015KWOff modePdr0.015KWType of energy inputElectricalCanacase heater mode0.000KWType of energy inputElectricalCapacity controlvariable2000KWStandby mode Q_{gc} 2000KWCapacity control Q_{ec} 2000KWSound power level, indoors/outdoors L_{gA} 41 / 54dBAAnnual energy consumption Q_{ec} 2000KWDaily electricity consumption Q_{ec} 400KWDaily electricity consumption Q_{ec} 400KWContext detailsVariable800KW <td></td> <td>perature Tj</td> <td>outdoor tem</td> <td>part load at indoor temperature 20 $^\circ$ C and</td> <td></td> <td></td> <td>ture T j</td> <td>temperature 20 °C and outdoor tempera</td>		perature Tj	outdoor tem	part load at indoor temperature 20 $^\circ$ C and			ture T j	temperature 20 °C and outdoor tempera
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	3. 39	COPd	Tj = − 7 ° C	kW	5.3	Pdh	Tj = - 7 ° C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-	0.99	Cdh	Degradation co-efficient (**)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	4. 76	COPd	Tj = + 2 ° C	kW	4.8	Pdh	Tj = + 2 ° C
Degradationco-efficient (**)Cdh0.98-Tj = +12 ° CPdh3.0kWTj = +12 ° CCOPd6.52Degradationco-efficient (**)Cdh0.97-TTj = bivalent temperaturePdh6.0KWTj = bivalent temperatureCOPd2.74Tj = operation limit temperature (***)Pdh6.0KWTj = operation limit temperatureCOPd2.74Bivalent temperatureTbiv-10° COperation limit temperatureTOL-30Reference design conditions for spaceTdesignh-10° CHeating water operating limitWTOL60Powerconsumptionin modesotherno0.015kWRated heat output (*)Psup0.0PowerconsumptionPage0.015kWType of energy inputElectricalCrankcase heatermodePox0.000kWhPage2220Sound power level, indoors/outdoorsLas41 / 54dBAAnnual energy consumption-2220Sound power level, indoors/outdoorsLas41 / 54dBAWater heating energy efficiency7 wh134Porteriotity consumptionQele4.000kWhWater heating energy efficiency7 wh134Contact detailsContact detailsS800kWhContact detailsContact detailsContact details					-	0.99	Cdh	Degradation co-efficient (**)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	5.90	COPd	Tj = + 7 ° C	kW	4. 9	Pdh	Tj = + 7 ° C
Degradation co-efficient (**)Cdh 0.97 F-Tj = bivalent temperaturePdh 6.0 kWTj = bivalent temperatureOOPd 2.74 Tj = operation limit temperature (***)Pdh 6.0 kWTj = operation limit temperature (***)COPd 2.74 Bivalent temperatureTbiv -10 ° COperation limit temperature (***)COPd 2.74 Bivalent temperatureTbiv -10 ° COperation limit temperature (***)TOL -30 Reference design conditions for spaceTdesignh -10 ° CHeating water operating limitWTOL 60 Power consumption in modes other than active modeSupplementary heaterSupplementary heaterSupplementary heater $Rated heat output (*)$ Psup 0.0 Thermostat-off mode P_{0FF} 0.015 kWType of energy inputElectricalCrankcase heater mode P_{0K} 0.000 kWType of energy inputElectricalOther itemsCapacity controlvariable air $flow$ rate, outdoors $ 2220$ Sound power level, indoors/outdoors L_{M} $41/54$ dBA $Airairairnual energy efficiencynwh134Daily electricity consumptionAEC880kWhWater heating energy efficiencynwh134$					-	0. 98	Cdh	Degradation co-efficient (**)
Tj = bivalent temperaturePdh6.0kWTj = bivalent temperatureOOPd2.74Tj = operation limit temperature (****)Pdh6.0kWTj = operation limit temperature (****)OOPd2.74Bivalent temperatureTbiv-10° COperation limit temperature (****)OOPd2.74Bivalent temperatureTbiv-10° COperation limit temperature (****)OOPd2.74Bivalent temperatureToiv-10° COperation limit temperatureTOL-30Reference design conditions for spaceTdesignh-10° CHeating water operating limitWTOL60Power consumption in modes other than active modeSupplementary heaterSupplementary heater000.01FWThermostat-off modePor0.015kWRated heat output (*)Psup0.0FeatureCrankcase heater modePox0.000kWType of energy inputElectricalCapacity controlvariableSecond-2220Sound power level, indoors/outdoorsLw,41 / 54dBAAnnual energy consumption-2220For heat pump combination heater:Declared load profileLWater heating energy efficiency7 wh134Daily electricity consumptionQelec4.000kWhKWhContact details70 kW	-	6. 52	COPd	Tj = +12 ° C	kW	3.0	Pdh	Tj = +12 ° C
Tj = operation limit temperature (***)Pdh6.0kWTj = operation limit temperature (***)COPd2.74Bivalent temperature heatingToiv-10° COperation limit temperatureTOL-30Reference design conditions for space heatingTdesignh-10° CHeating water operating limit temperatureTOL-30Power consumption in modes other than active modeSupplementary heater6060Off mode Thermostat-off modePorF0.015kWRated heat output (*)Psup0.0Standby mode Crankcase heater modePos0.000kWType of energy inputElectricalOther itemsCapacity control Sound power level, indoors/outdoors Annual energy consumption Daily electricity consumption $Qelec$ 4.000Rated air flow rate, outdoors kWh-2220For heat pump combination heater:Declared load profile Delared load profileL Mater heating energy efficiency η wh134Contact detailsAEC880kWhKWhKWhKWhKWh					-	0.97	Cdh	Degradation co-efficient (**)
Bivalent temperature heating Tbiv Tdesignh -10 ° C r Operation limit temperature Heating water operating limit temperature TOL -30 Power consumption in modes other than active mode ° C ° C Heating water operating limit temperature TOL -30 Power consumption in modes other than active mode 0.015 kW Supplementary heater Supplementary heater Off mode PorF 0.015 kW Rated heat output (*) Psup 0.0 Thermostat-off mode Por 0.015 kW Type of energy input Electrical Crankcase heater mode Pox 0.000 kW Type of energy input Electrical Other items Capacity control variable Rated air flow rate, outdoors - 2220 Sound power level, indoors/outdoors LmA 41 / 54 dBA - - 2220 For heat pump combination heater: Declared load profile L Water heating energy efficiency 7,wh 134 Daily electricity consumption Qelec 4.000 kWh KWh Contact details - 2220	-	2. 74	COPd	Tj = bivalent temperature	kW	6. 0	Pdh	Tj = bivalent temperature
Reference design conditions for space heatingTdesignh-10° CHeating water operating limit temperatureWTOL60Power consumption in modes other than active modeOff modePorF0.015kWSupplementary heaterSupplementary heaterOff modePorF0.015kWRated heat output (*)Psup0.0Thermostat-off modePor0.015kWType of energy inputElectricalCrankcase heater modePor0.000kWType of energy inputElectricalOther itemsCapacity controlvariableRated air flow rate, outdoors-2220Sound power level, indoors/outdoorsLmA41 / 54dBAKWhFor heat pump combination heater:-2220Declared load profileLLWater heating energy efficiency η wh134Daily electricity consumptionQelec4.000kWhKWhContact detailsSasokWh	-	2. 74	COPd	Tj = operation limit temperature (***)	kW	6. 0	Pdh	Tj = operation limit temperature (***)
Reference design conditions for space heatingTdesignh-10° CHeating water operating limit temperatureWTOL60Power consumption in modes other than active modeOff modePorF0.015kWSupplementary heaterSupplementary heaterOff modePorF0.015kWRated heat output (*)Psup0.0Thermostat-off modePor0.015kWType of energy inputElectricalCrankcase heater modePor0.000kWType of energy inputElectricalOther itemsCapacity controlvariableRated air flow rate, outdoors-2220Sound power level, indoors/outdoorsLmA41 / 54dBAKWhFor heat pump combination heater:-2220Declared load profileLLWater heating energy efficiency η wh134Daily electricity consumptionQelec4.000kWhKWhContact detailsSasokWh								
heatingIdesign-10Ctemperaturewith60Power consumption in modes other than active modeSupplementary heaterSupplementary heaterOff modePorf0.015kWThermostat-off modePro0.015kWStandby modePsg0.015kWCrankcase heater modePox0.000kWOther itemsCapacity controlvariableRated air flow rate, outdoors-Sound power level, indoors/outdoorsL _{MA} 41 / 54dBAAnnual energy consumption-2220For heat pump combination heater:Declared load profileLWater heating energy efficiency η wh134Daily electricity consumptionQelec4.000kWhKWhContact details	°C	-30	TOL	Operation limit temperature	°C	-10	Tbiv	Bivalent temperature
Power consumption in modes other than active mode Supplementary heater Off mode PoFF 0.015 kW Thermostat-off mode Pro 0.015 kW Standby mode PsB 0.015 kW Crankcase heater mode PoK 0.000 kW Other items 0.000 kW Type of energy input Electrical Capacity control variable said - 2220 Sound power level, indoors/outdoors L _{WA} 41 / 54 dBA dBA Annual energy consumption Q _{HE} 2600 kWh Water heating energy efficiency η wh 134 Daily electricity consumption Qelec 4.000 kWh KWh Contact details - 2220	°C	60	WTOL		°C	-10	Tdes i gnh	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Supplementary heater		de	active mo	Power consumption in modes other than
Standby mode P_{SB} 0.015 kWType of energy inputElectricalCrankcase heater mode P_{CK} 0.000 kWType of energy inputElectricalOther items 0.000 kWRated air flow rate, outdoors $-$ 2220Sound power level, indoors/outdoors L_{MA} $41/54$ dBA $-$ 2220Sound power level, indoors/outdoors L_{MA} $41/54$ dBA $ 2220$ For heat pump combination heater: 0.000 kWh $ 134$ Declared load profileLWater heating energy efficiency η wh 134 Daily electricity consumptionQelec 4.000 kWh kWh $-$ Contact details $ -$	kW	0.0	Psup	Rated heat output (*)	kW	0. 015	P _{0FF}	Off mode
Crankcase heater mode P _{OK} 0.000 kW Other items Capacity control variable Rated air flow rate, outdoors - 2220 Sound power level, indoors/outdoors L _{WA} 41 / 54 dBA - 2220 Annual energy consumption Q _{HE} 2600 kWh - 2220 For heat pump combination heater: Declared load profile L Water heating energy efficiency 7 wh 134 Daily electricity consumption Qelec 4.000 kWh KWh - - - Contact details S80 kWh -					kW	0.015	P _{T0}	Thermostat-off mode
Other items Variable Rated air flow rate, outdoors 2220 Sound power level, indoors/outdoors L _{WA} 41 / 54 dBA - 2220 Sound power level, indoors/outdoors L _{WA} 41 / 54 dBA - 2220 Annual energy consumption Q _{HE} 2600 kWh - 2220 For heat pump combination heater: Declared load profile L Water heating energy efficiency η wh 134 Daily electricity consumption Qelec 4.000 kWh KWh - - Contact details Gottact details - - - - -		Electrical		Type of energy input	kW	0.015	P _{SB}	Standby mode
Capacity control variable Rated air flow rate, outdoors 2220 Sound power level, indoors/outdoors L _{WA} 41 / 54 dBA Annual energy consumption Q _{HE} 2600 kWh For heat pump combination heater: Declared load profile L Daily electricity consumption Qelec 4.000 kWh Annual electricity consumption AEC 880 kWh					kW	0.000	Рск	Crankcase heater mode
Capacity control Variable 2220 Sound power level, indoors/outdoors L_{WA} $41 / 54$ dBA Annual energy consumption Q_{HE} 2600 kWh For heat pump combination heater: Declared load profile L Water heating energy efficiency η wh 134 Daily electricity consumption Qelec 4.000 kWh KWh Contact details								Other items
Annual energy consumption Q _{HE} 2600 kWh For heat pump combination heater: Declared load profile Daily electricity consumption Qelec 4.000 kWh Annual electricity consumption AEC 880 kWh	m³/h	2220	-	Rated air flow rate, outdoors		variable		Capacity control
For heat pump combination heater: Declared load profile L Daily electricity consumption Qelec Annual electricity consumption AEC 880 kWh					dBA	41 / 54	L _{WA}	Sound power level, indoors/outdoors
Declared load profile L Water heating energy efficiency η wh 134 Daily electricity consumption Qelec 4.000 kWh Annual electricity consumption AEC 880 kWh Contact details Contact details Contact details					kWh	2600	Q_{HE}	Annual energy consumption
Daily electricity consumption Qelec 4.000 kWh Annual electricity consumption AEC 880 kWh Contact details Contact details Contact details								For heat pump combination heater:
Annual electricity consumption AEC 880 kWh Contact details	%	134	η wh	Water heating energy efficiency		L		Declared load profile
Contact details					kWh	4.000	Qelec	Daily electricity consumption
					kWh	880	AEC	Annual electricity consumption
					·			Contact details
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MANUFACTURING TURKEY JOINT STOCK COMPANY Manisa OSB 4. Kisim Kecilikoyosb Mah. Ahmet Nazif Zorlu Bulvari No:19 Yunusemre - Man	isa, Turkey	9 Yunusemre – Man	lu Bulvari No:1					
The identification and signature of the person empowered to bind the supplier; Kenichi SAITO					to bind the	empowered t	ne person	The identification and signature of the
The signature is signed in the average climate / medium-temperature section. Manager, Quality Assuarance Department TURKEY					re section.	um-temperatu	mate / mediu	The signature is signed in the average cli
· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.				installation and or operation manuals.	found in the	embly can be	ance and asse	· Details and precautions on installation, maintena

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	116	%
Declared capacity for heating for part	load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = − 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	2. 55	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	3.6	kW	Tj = + 2 ° C	COPd	3. 50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 3	kW	Tj = + 7 ° C	COPd	4. 89	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	6.89	-
Degradation co-efficient (**)	Cdh	0.97	_				
Tj = bivalent temperature	Pdh	4. 9	kW	Tj = bivalent temperature	COPd	1. 75	-
Tj = operation limit temperature (***)	Pdh	4. 0	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 75	-
Bivalent temperature	Tbiv	-15	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	2.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4960	k₩h				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	105	%
Daily electricity consumption	Qelec	4. 820	k₩h				
Annual electricity consumption	AEC	1060	kWh				
Contact details				·			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	FOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∶1	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ie person	empowered	to bind the				
The signature is signed in the average cli	nate / mediu	ım-temperatu	re section	Kenichi SAITO Manager, Quality Assuarance Department			
				TURKEY			
· Details and precautions on installation, maintena	nce and asso	embly can be	found in the				
· Details and precautions on recycling and/or disp	oosal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	139	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	3.8	kW	Tj = + 2 ° C	COPd	4. 15	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = + 7 ° C	Pdh	4. 5	kW	Tj = + 7 ° C	COPd	5. 42	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	7.56	-
Degradation co-efficient (**)	Cdh	0.96	-				
Tj = bivalent temperature	Pdh	5. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Tj = operation limit temperature (***)	Pdh	3. 1	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2. 05	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	2. 9	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4168	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	105	%
Daily electricity consumption	Qelec	4. 820	k₩h				
Annual electricity consumption	AEC	1060	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	ım-temperatu	re section	Manager, Quality Assuarance Department			
		comporatu		TURKEY			
· Details and precautions on installation, maintena	nce and asse	embly can be	found in the	installation and or operation manuals.			
\cdot Details and precautions on recycling and/or disp	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	165	%
Declared capacity for heating for part	load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor ter	mperature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	6.0	kW	Tj = + 2 ° C	COPd	2. 10	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 7 ° C	Pdh	4.0	kW	Tj = + 7 ° C	COPd	3. 28	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = +12 ° C	Pdh	4. 5	kW	Tj = +12 ° C	COPd	6. 16	-
Degradation co-efficient (**)	Cdh	0. 98	-			. <u> </u>	
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2. 10	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2. 10	-
			-			. <u> </u>	
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		1 1	
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	1914	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	135	%
Daily electricity consumption	Qelec	3.850	kWh				
Annual electricity consumption	AEC	846	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of the	ie person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	nate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
Details and precautions on installation, maintena Details and precautions on recycling and/or dis		,		installation and or operation manuals.			

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST17D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

Symbol	Value	Unit	Item	Symbol	Value	Unit
Prated	6.0	kW	Seasonal space heating energy efficiency	η s	231	%
: load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Cdh	-	-				
Pdh	6. 0	kW	Tj = + 2 ° C	COPd	3.80	-
Cdh	0.99	_				
Pdh	4.4	kW	Tj = + 7 ° C	COPd	5. 10	-
Cdh	0. 98	_				
Pdh	4. 7	kW	Tj = +12 ° C	COPd	7.46	-
Cdh	0. 98	_				
Pdh	6. 0	kW	Tj = bivalent temperature	COPd	3.80	-
Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	3.80	-
		-				
Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Tdesignh	2	°C	Heating water operating limit temperature	WTOL	60	°C
active mo	de		Supplementary heater			
P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0.015	kW				
P_{SB}	0. 015	kW	Type of energy input		Electrical	
P _{CK}	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2220	m³/h
L _{WA}	41 / 54	dBA				
\mathbf{Q}_{HE}	1371	kWh				
			•			
	L		Water heating energy efficiency	η wh	135	%
Qelec	3. 850	kWh				
AEC	846	kWh				
NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
ie person	empowered	to bind the				
nate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
	Prated Frated Frated Frated Pdh Cdh PoFF Pro PsB PcK Cdh PcK Cdh PcK PcK Cdh PcK Cdh PcK Cdh PcK Cdh PcK Cdh PcK Cdh PcK Cdh Cdh PcK Cdh Cdh PcK Cdh Cdh Cdh Cdh Cdh Cdh Cdh Cdh	Prated 6.0 Ioad at indoor ure T j Pdh Cdh Pdh 6.0 Cdh Pdh 6.0 Cdh Pdh 6.0 Cdh Pdh 6.0 Cdh 0.99 Pdh 4.4 Cdh 0.98 Pdh 6.0 Tdesignh 2 active mode Por Por 0.015 PsB 0.015 Pox 0.000 variable L Qelec <td< td=""><td>Prated 6.0 kW Ioad at indoor </td><td>Prated6.0kWPrated6.0kWi load at indoorenergy efficiencyure T jpath-Pdh-kWCdhPdh6.0kWCdhPdh6.0kWCdh0.99-Pdh4.4kWCdh0.98Pdh4.7kWCdh0.98Pdh6.0kWPdh6.0kWPdh6.0kWPdh6.0kWPdh6.0kWPdh6.0kWPdh2° Cactive mode° CPorr0.015kWPorr0.015kWPox0.000kWType of energy inputvariableRated air flow rate, outdoorsLWater heating energy efficiencyQelec3.850A46kWhAEC846KWhManisa OSB 4.Kisim Kecilikoyoab Mah. Amet Nazif Zorne person empowered to bind the supplier:Manager, Quality Assuarance Department</td><td>Prated6.0kWSeasonal space heating energy efficiency7 sPrated6.0kWSeasonal space heating energy efficiency7 sPahkWDeclared coefficient of performance or primary energy part load at indoor temperature 20 ° C and outdoor tem T j = - 7 ° CPahPah6.0kWT j = - 7 ° CCOPdCdhPah4.4kWT j = + 2 ° CCOPdCdh0.99Pdh4.7kWT j = + 7 ° CCOPdCdh0.98Pdh6.0kWT j = + 12 ° CCOPdCdh0.98Pdh6.0kWT j = bivalent temperatureCOPdCdh0.98Pdh6.0kWT j = operation limit temperatureCOPdCdh0.98Tbiv2° C0peration limit temperatureTOLHeating water operating limitWTOLSupplementary heater-Porr0.015KWType of energy input-Pas0.000kWhPas1371kWhQelec3.850kWhAetNutfortRING TURKEY JOINT STOCK COMPANYManager, Quality Assuarance DepartmentNUFACTURING TURKEY JOINT STOCK COMPANYManager, Quality Assuarance Department</td></td<> <td>Prated6.0KW10ad at indoorIndoorure T jpart load at indoorPdh-Cdh-Pdh-Rdd-Pdh-Cdh-Pdh6.0KWCdh-Pdh6.0KWCdh-Pdh6.0KWCdh0.99-Pdh4.4KWCdh0.98-Pdh4.7KWCdh0.98-Pdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdr0.015KWPars0.015KWPro0.015KWPro0.015KWPro0.015KWPars0.00KWPars0.00KWPars0.00KWPro0.015</td>	Prated 6.0 kW Ioad at indoor	Prated6.0kWPrated6.0kWi load at indoorenergy efficiencyure T jpath-Pdh-kWCdhPdh6.0kWCdhPdh6.0kWCdh0.99-Pdh4.4kWCdh0.98Pdh4.7kWCdh0.98Pdh6.0kWPdh6.0kWPdh6.0kWPdh6.0kWPdh6.0kWPdh6.0kWPdh2° Cactive mode° CPorr0.015kWPorr0.015kWPox0.000kWType of energy inputvariableRated air flow rate, outdoorsLWater heating energy efficiencyQelec3.850A46kWhAEC846KWhManisa OSB 4.Kisim Kecilikoyoab Mah. Amet Nazif Zorne person empowered to bind the supplier:Manager, Quality Assuarance Department	Prated6.0kWSeasonal space heating energy efficiency7 sPrated6.0kWSeasonal space heating energy efficiency7 sPahkWDeclared coefficient of performance or primary energy part load at indoor temperature 20 ° C and outdoor tem T j = - 7 ° CPahPah6.0kWT j = - 7 ° CCOPdCdhPah4.4kWT j = + 2 ° CCOPdCdh0.99Pdh4.7kWT j = + 7 ° CCOPdCdh0.98Pdh6.0kWT j = + 12 ° CCOPdCdh0.98Pdh6.0kWT j = bivalent temperatureCOPdCdh0.98Pdh6.0kWT j = operation limit temperatureCOPdCdh0.98Tbiv2° C0peration limit temperatureTOLHeating water operating limitWTOLSupplementary heater-Porr0.015KWType of energy input-Pas0.000kWhPas1371kWhQelec3.850kWhAetNutfortRING TURKEY JOINT STOCK COMPANYManager, Quality Assuarance DepartmentNUFACTURING TURKEY JOINT STOCK COMPANYManager, Quality Assuarance Department	Prated6.0KW10ad at indoorIndoorure T jpart load at indoorPdh-Cdh-Pdh-Rdd-Pdh-Cdh-Pdh6.0KWCdh-Pdh6.0KWCdh-Pdh6.0KWCdh0.99-Pdh4.4KWCdh0.98-Pdh4.7KWCdh0.98-Pdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdr0.015KWPars0.015KWPro0.015KWPro0.015KWPro0.015KWPars0.00KWPars0.00KWPars0.00KWPro0.015

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	131	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ter	mperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	2. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 1	kW	Tj = + 7 ° C	COPd	4. 20	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	2. 7	kW	Tj = +12 ° C	COPd	5.87	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2.00	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2.00	-
			•				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q_{HE}	3706	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 080	kWh				
Annual electricity consumption	AEC	898	kWh				
Contact details		•					
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind th				
百藤健一				Kenichi SAITO Manager, Quality Assuarance Department			
12 1971 DE -				Manager, Quality Assuarance Department TURKEY			
· Dataile and proceptions on installation maintang				installation and or operation manuals			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM6OVAA
	Indoor unit:	ERST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	188	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	3. 39	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.8	kW	Tj = + 2 ° C	COPd	4. 76	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4.9	kW	Tj = + 7 ° C	COPd	5.90	-
Degradation co-efficient (**)	Cdh	0. 98	-			I	
Tj = +12 ° C	Pdh	3.0	kW	Tj = +12 ° C	COPd	6. 52	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6.0	kW	Tj = bivalent temperature	COPd	2. 74	-
Tj = operation limit temperature (***)	Pdh	6.0	kW	Tj = operation limit temperature (***)	COPd	2. 74	-
			Į			I	
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		II	
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW			1	
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items			II.				
Capacity control		variable		Rated air flow rate, outdoors	_	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q _{HE}	2600	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 080	kWh			<u> </u>	
Annual electricity consumption	AEC	898	kWh				
Contact details			<u> </u>				
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	ANUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre - M	anisa, Turkey
The identification and signature of the	ne person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / medi	um-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
· Details and precautions on installation, maintena		,					

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	116	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = − 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	2. 55	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 2 ° C	Pdh	3.6	kW	Tj = + 2 ° C	COPd	3. 50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4.3	kW	Tj = + 7 ° C	COPd	4. 89	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	6.89	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	4. 9	kW	Tj = bivalent temperature	COPd	1. 75	-
Tj = operation limit temperature (***)	Pdh	4. 0	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 75	-
Bivalent temperature	Tbiv	-15	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	2. 0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4960	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	109	%
Daily electricity consumption	Qelec	4. 750	kWh				
Annual electricity consumption	AEC	1044	kWh				
Contact details				· ·			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the				
The signature is signed in the everage sli	mata / madiu	m_tomporatu	ra anation	Kenichi SAITO Manager, Quality Assuarance Department			
The signature is signed in the average clin	nate / medit	um comperatu		TURKEY			
· Details and precautions on installation, maintena	nce and ass	embly can be	found in the				
· Details and precautions on recycling and/or dis	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	139	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	3.8	kW	Tj = + 2 ° C	COPd	4. 15	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = + 7 ° C	Pdh	4. 5	kW	Tj = + 7 ° C	COPd	5. 42	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	7. 56	-
Degradation co-efficient (**)	Cdh	0.96	-				
Tj = bivalent temperature	Pdh	5. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Tj = operation limit temperature (***)	Pdh	3. 1	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2. 05	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	2.9	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4168	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	109	%
Daily electricity consumption	Qelec	4. 750	kWh				
Annual electricity consumption	AEC	1044	kWh				
Contact details				· ·			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the				
The signature is signed in the evenes ali	mata / madiu		vo costion	Kenichi SAITO Manager, Quality Assuarance Department			
The signature is signed in the average clin	male / medil	um-remperatu		TURKEY			
· Details and precautions on installation, maintena	nce and asso	embly can be	found in the				
· Details and precautions on recycling and/or dis							

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Rated heat output (*)	Durit						
	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	165	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	6.0	kW	Tj = + 2 ° C	COPd	2. 10	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 7 ° C	Pdh	4.0	kW	Tj = + 7 ° C	COPd	3. 28	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = +12 ° C	Pdh	4. 5	kW	Tj = +12 ° C	COPd	6. 16	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2. 10	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2. 10	-
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	1914	k₩h				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	139	%
Daily electricity consumption	Qelec	3. 820	kWh				
Annual electricity consumption	AEC	841	k₩h				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre - M	anisa, Turkey
The identification and signature of the	ne person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
· Details and precautions on installation, maintena	ance and asse	embly can be	found in the				

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	ERST20D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

Symbol	Value	Unit	Item	Symbol	Value	Unit
Prated	6.0	kW	Seasonal space heating energy efficiency	η s	231	%
: load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Cdh	-	-				
Pdh	6. 0	kW	Tj = + 2 ° C	COPd	3.80	-
Cdh	0.99	_				
Pdh	4.4	kW	Tj = + 7 ° C	COPd	5. 10	-
Cdh	0. 98	_				
Pdh	4. 7	kW	Tj = +12 ° C	COPd	7.46	-
Cdh	0. 98	_				
Pdh	6. 0	kW	Tj = bivalent temperature	COPd	3.80	-
Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	3.80	-
		-				
Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Tdesignh	2	°C	Heating water operating limit temperature	WTOL	60	°C
active mo	de		Supplementary heater			
P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0.015	kW				
P_{SB}	0. 015	kW	Type of energy input		Electrical	
P _{CK}	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2220	m³/h
L _{WA}	41 / 54	dBA				
\mathbf{Q}_{HE}	1371	kWh				
			•			
	L		Water heating energy efficiency	η wh	139	%
Qelec	3. 820	kWh				
AEC	841	kWh				
NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
le person	empowered	to bind the				
nate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
	Prated Frated Frated Frated Pdh Cdh PoFF Pro PsB PcK Cdh PcK Cdh PcK PcK Cdh PcK Cdh PcK Cdh PcK Cdh PcK Cdh PcK Cdh PcK Cdh Cdh PcK Cdh Cdh PcK Cdh Cdh Cdh Cdh Cdh Cdh Cdh Cdh	Prated 6.0 Ioad at indoor ure T j Pdh Cdh Pdh 6.0 Cdh Pdh Cdh Pdh 6.0 Cdh Pdh 6.0 Cdh 0.99 Pdh 4.4 Cdh 0.98 Pdh 6.0 Tdesignh 2 active mode PorF 0.015 PsB 0.015 PsB 0.015 Pock 0.000 variable L Qelec 3.820 AEC 841	Prated 6.0 kW Ioad at indoor	Prated 6.0 kW Prated 6.0 kW i load at indoor energy efficiency ure T j - kW Pdh - kW Cdh - - Pdh 6.0 kW Cdh - - Pdh 6.0 kW Cdh 0.99 - Pdh 4.4 kW Cdh 0.98 - Pdh 6.0 kW Cdh 0.98 - Pdh 6.0 kW Tj = +7 ° C Cdh 0.98 - Pdh 6.0 kW Tj = operation limit temperature Tj = operation limit temperature Heating water operating limit temperature active mode Supplementary heater Porr 0.015 kW Pos 0.000 kW Pox 0.000 kW Variable Rated air flow rate, outdoors Law 41 / 54 dBA	Prated6.0kWPrated6.0kWPrated6.0kWcload at indoorindoorPdhPdhPdhPdhPdh6.0kWCdh-Pdh6.0kWCdh0.99Pdh4.4KWTj = - 7 ° CCdh0.99Pdh4.4KWTj = + 7 ° CCdh0.98Pdh4.7KWTj = + 12 ° CCdh0.98Pdh6.0KWTj = bivalent temperatureCdh0.98Pdh6.0KWTj = operation limit temperatureCdh0.98Pdh6.0KWYCdh0.015KWYPdr0.015KWPorPorr0.015VariableRated air flow rate. outdoorsVariableRated air flow rate. outdoorsLVariableVariableRated air flow rate. outdoorsLLQelec3.820Al1kWhNUFACTURING TURKEY JOINT STOCK COMPANYMarker / medium-temperature section.Manager, Quality Assuarance Department	Prated6.0KW10ad at indoorIndoorure T jpdfPdh-KW-Odh-Pdh-Rdh-Pdh-CdhPdh6.0KWTj = -7 ° CCdh0.99Pdh4.4KWCdh0.98Pdh4.7KWCdh0.98Pdh6.0KWPdh6.0KWCdh0.98-Pdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdh6.0KWPdr0.015KWPro0.015Pro0.015Pro0.015Pro0.015Pro0.015KWPro0.015Rated air flow rate. outdoors-2220LKWhQelec3.820AddKWhAEC841KWh <t< td=""></t<>

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	129	%
Declared capacity for heating for part	: load at	indoor	1	Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 °C and	outdoor te	mperature Tj	
Tj = - 7 ° C	Pdh	5.3	kW	Tj = - 7 ° C	COPd	2. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4. 1	kW	Tj = + 7 ° C	COPd	4. 20	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	2. 7	kW	Tj = +12 ° C	COPd	5. 87	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2.00	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2.00	-
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	3761	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	134	%
Daily electricity consumption	Qelec	4. 080	kWh				
Annual electricity consumption	AEC	898	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - Ma	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind th				
百藤建一				Kenichi SAITO Manager, Quality Assuarance Department			
17 MULE DE -				TURKEY			
· Details and precautions on installation maintena	nee and eee	ambly can be	found in the	-			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Prated oad at T j Pdh	6.0 indoor	kW	Seasonal space heating energy efficiency Declared coefficient of performance or prim	η s	184	%
Тj	indoor		Declared coefficient of performance or prim			
-				nary energy	ratio for	
Pdh			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
	5.3	kW	Tj = - 7 ° C	COPd	3. 39	-
Cdh	0.99	-			. <u> </u>	
Pdh	4.8	kW	Tj = + 2 ° C	COPd	4. 76	-
Cdh	0. 99	_				
Pdh	4. 9	kW	Tj = + 7 ° C	COPd	5. 90	-
Cdh	0. 98	-				
Pdh	3. 0	kW	Tj = +12 ° C	COPd	6. 52	-
Cdh	0.97	-				
Pdh	6.0	kW	Tj = bivalent temperature	COPd	2. 74	-
Pdh	6.0	kW	Tj = operation limit temperature (***)	COPd	2. 74	-
Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
les i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
tive mo	de		Supplementary heater			
P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0. 015	kW				
P_{SB}	0. 015	kW	Type of energy input		Electrical	
P _{CK}	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2220	m³/h
L_{WA}	41 / 54	dBA				
Q_{HE}	2655	kWh				
	L		Water heating energy efficiency	η wh	134	%
Qelec	4. 080	kWh				
AEC	898	kWh				
				lu Bulvari No∶1	19 Yunusemre – M	anisa, Turkey
person	empowered t	o bind the	e supplier; Kenichi SAITO			
e / mediu	m-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
	Cdh Pdh Cdh Pdh Cdh Pdh Pdh Tbiv esignh tive mo PoFF PTO PSB PCK PTO PSB PCK CURING TO Delec AEC CTURING TO Derson (/ mediu	Cdh 0.99 Pdh 4.9 Cdh 0.98 Pdh 3.0 Cdh 0.97 Pdh 6.0 Pdh 0.015 Pro 0.015 PGK 0.000 Variable L L 2655 L 2655 L 2655 CTURING TURKEY JOINT ST person empowered to 1 / medium-temperature 1 and assembly can be 1	Cdh 0.99 - Pdh 4.9 kW Cdh 0.98 - Pdh 3.0 kW Cdh 0.97 - Pdh 6.0 kW Porr 0.015 kW Pck 0.000 kW Pck 0.000 kW L Variable L L L L Delec 4.080 kWh AEC 898 kWh CTURING TURKEY JOINT STOCK COMPANY Derson empowered to bind the / medium-temperature section.	Cdh 0.99 -Pdh 4.9 kWCdh 0.98 -Pdh 3.0 kWCdh 0.98 -Pdh 3.0 kWCdh 0.97 -Pdh 6.0 kWPdh 6.0 kWTbiv -10 ° Cesignh -10 ° CHating water operating limitCoperation limit temperatureHeating water operating limitEmperatureSupplementary heaterSupplementary heaterPorr 0.015 kWPas 0.015 kWPork 0.000 kWVariableRated air flow rate, outdoorsLVariableRated air flow rate, outdoorsLUWater heating energy efficiencyCTURING TURKEY JOINT STOCK COMPANYManisa 0S8 4.Kisim Kecilikoyosh Mah. Ahmet Nazif Zorperson empowered to bind the supplier: Kenichi SAITOManager, Quality Assuarance Department	Cdh 0.99 -Pdh 4.9 KWCdh 0.98 -Pdh 3.0 KWTj = +12 ° CCOPdCdh 0.97 -Pdh 6.0 KWPdh 6.0 KWTj = bivalent temperatureCOPdPdh 6.0 KWTj = operation limit temperature (***)COPdTbiv -10 ° CPorr 0.015 KWPorr 0.015 KWPorr 0.015 KWPass 0.015 KWPorr 0.015 KWPorr 0.015 KWPorr 0.000 KWPro 0.015 KWPorr 0.000 KWPorr 0.000 KWPorr 0.015 KWPorr 0.015 KWPorr 0.000 KWPorr 0.015 KWPorr 0.000 KWPorr 0.000 KWPorr 0.000 KWPorr 0.000 KWPorr 0.000 KWPorr 0.000	Cdh 0.99 -TPdh 4.9 kWTCdh 0.98 -Pdh 3.0 kWTPdh 6.0 kWNOLPdh 6.0 kWNOLPdf 0.015 kWRated heat output (*)PsupPor 0.015 kWType of energy inputElectricalPox 0.000 kWType of energy inputElectricalPox 0.000 kWWater heating energy efficiency η wh134Pelec 4.080 kWhManisa 0SB 4.Kisim Kecilikoyoab Mah. Atmet Nazif Zorlu Bulvari No:19 Yunuseme - MDelec 4.080 kWhManisa 0SB 4.Kisim Kecilikoyoab Mah. Atmet Nazif Zorlu Bulvari No:19 Yunuseme - MCURING TURKEY JOINT STOCK COMPANYManisa 0SB 4.Kisim Kecilikoyoab Mah. Atmet Nazif Zorlu Bulvari No:19 Yunuseme - MDereson empowered to bind the supplier: kenichi SAITOKenichi SAITO/ medium-temperature section.Manager, Qualit

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	η s	115	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ter	nperature Tj	
Tj = − 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	2. 55	-
Degradation co-efficient (**)	Cdh	0.99	_				
Tj = + 2 ° C	Pdh	3.6	kW	Tj = + 2 ° C	COPd	3.50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	4.3	kW	Tj = + 7 ° C	COPd	4. 89	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	6.89	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	4. 9	kW	Tj = bivalent temperature	COPd	1. 75	-
Tj = operation limit temperature (***)	Pdh	4. 0	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 75	-
Bivalent temperature	Tbiv	-15	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P_{0FF}	0.015	kW	Rated heat output (*)	Psup	2.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	Q _{HE}	4993	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	109	%
Daily electricity consumption	Qelec	4. 750	kWh				
Annual electricity consumption	AEC	1044	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – N	lanisa, Turkey
The identification and signature of the	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section	Manager, Quality Assuarance Department			
	,			TURKEY			
· Details and precautions on installation, maintena	ance and ass	embly can be	found in the	installation and or operation manuals.			
\cdot Details and precautions on recycling and/or dis	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	138	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	3.6	kW	Tj = - 7 ° C	COPd	3. 21	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	3.8	kW	Tj = + 2 ° C	COPd	4. 15	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = + 7 ° C	Pdh	4. 5	kW	Tj = + 7 ° C	COPd	5. 42	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	3. 1	kW	Tj = +12 ° C	COPd	7.56	-
Degradation co-efficient (**)	Cdh	0.96	-				
Tj = bivalent temperature	Pdh	5. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Tj = operation limit temperature (***)	Pdh	3. 1	kW	Tj = operation limit temperature (***)	COPd	1. 42	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	4. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2. 05	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	2. 9	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	4202	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	109	%
Daily electricity consumption	Qelec	4. 750	k₩h				
Annual electricity consumption	AEC	1044	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	ım-temperatu	re section	Manager, Quality Assuarance Department			
		comporatu		TURKEY			
· Details and precautions on installation, maintena	nce and asse	embly can be	found in the	installation and or operation manuals.			
\cdot Details and precautions on recycling and/or dis	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	6.0	kW	Seasonal space heating energy efficiency	ηs	159	%
Declared capacity for heating for part	load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperature T j				part load at indoor temperature 20 $^\circ$ C and	outdoor ter	nperature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	6.0	kW	Tj = + 2 ° C	COPd	2. 10	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 7 ° C	Pdh	4.0	kW	Tj = + 7 ° C	COPd	3. 28	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	4. 5	kW	Tj = +12 ° C	COPd	6. 16	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	6. 0	kW	Tj = bivalent temperature	COPd	2. 10	-
Tj = operation limit temperature (***)	Pdh	6. 0	kW	Tj = operation limit temperature (***)	COPd	2. 10	-
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		II	
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2220	m³/h
Sound power level, indoors/outdoors	L _{WA}	41 / 54	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	1980	kWh				
For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	η wh	139	%
Daily electricity consumption	Qelec	3. 820	kWh				
Annual electricity consumption	AEC	841	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - M	anisa, Turkey
The identification and signature of the	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
Details and precautions on installation, maintena Details and precautions on recycling and/or dis		,		installation and or operation manuals.			

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM60VAA
	Indoor unit:	EHST20D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

	6.0 indoor	kW	Seasonal space heating energy efficiency	η s	220	%	
	indoor						
j			Declared coefficient of performance or prim	nary energy	ratio for		
	temperature 20 $^\circ$ C and outdoor temperature T j			part load at indoor temperature 20 $^\circ$ C and outdoor temperature Tj			
lh	-	kW	Tj = - 7 ° C	COPd	-	-	
lh	-	-					
lh	6. 0	kW	Tj = + 2 ° C	COPd	3.80	-	
lh	0. 99	-					
lh	4. 4	kW	Tj = + 7 ° C	COPd	5. 10	-	
lh	0. 98	-					
lh	4. 7	kW	Tj = +12 ° C	COPd	7.46	-	
lh	0. 98	-					
lh	6. 0	kW	Tj = bivalent temperature	COPd	3.80	-	
lh	6. 0	kW	Tj = operation limit temperature (***)	COPd	3.80	-	
iv	2	°C	Operation limit temperature	TOL	-30	°C	
i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C	
ve mo	de		Supplementary heater				
FF	0.015	kW	Rated heat output (*)	Psup	0.0	kW	
0	0.015	kW					
B	0.015	kW	Type of energy input		Electrical		
ж	0.000	kW					
	variable		Rated air flow rate, outdoors	-	2220	m³/h	
IA	41 / 54	dBA					
E	1437	kWh					
	L		Water heating energy efficiency	η wh	139	%	
ec	3. 820	kWh					
C	841	kWh					
				lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey	
son	empowered t	o bind the					
mediu	ım-temperatu	re section.	Manager, Quality Assuarance Department				
	DFF TO SB CK WA HE EC EC JRING T rson ' mediu	dh 0.99 dh 4.4 dh 0.98 dh 4.7 dh 0.98 dh 6.0 dh 6.0 dh 6.0 dh 2 ignh 2 ve mode OFF 0.015 0.015 0.015 SB 0.015 CK 0.000 Variable MA 41 / 54 HE 1437 L Iec 3.820 EC 841 JRING TURKEY JOINT ST rson empowered t '' medium-temperatu	dh 0.99 - dh 4.4 kW dh 0.98 - dh 4.7 kW dh 0.98 - dh 6.0 kW dh 2 ° C ignh 2 ° C ve mode - - 0.015 kW - SB 0.015 kW ck 0.000 kW var i able - WA 41 / 54 dBA HE 1437 kWh L - - Lec 3.820 kWh JRING TURKEY JOINT STOCK COMPANY rson empowered to bind the ' medium-temperature section. -	dh 0.99 $-$ dh 4.4 kW $Tj = +7 ° C$ dh 0.98 $-$ dh 4.7 kWdh 6.0 kWdh $2 ° C$ 0 operationlimit temperatureHeating water operating limit temperatureSupplementary heaterSupplementary heaterSupplementary heaterFF 0.015 kW 0.000 kWType of energy input ox 0.000 kW ax $41/54$ dBA kWhtec 3.820 kWhLWater heating energy efficiencylec 3.820 kWhRING TURKEY JOINT STOCK COMPANYManisa 0SB 4.Kisim Kecilikoyosb Mah. Anmet Nazif Zorrson empowered to bind the supplier: Kenichi SAITO	dh 0.99 - dh 4.4 kW dh 0.98 - dh 4.7 kW dh 4.7 kW dh 0.98 - dh 6.0 kW dh 6.0 kW iv 2 ° C ignh 2 ° C vermode Supplementary heater TOL Heating water operating limit emperature WTOL vermode Supplementary heater Vermode Supplementary heater variable Rated heat output (*) Psup variable Rated air flow rate, outdoors - wa 41 / 54 dBA veriable Water heating energy efficiency 7wh lec 3.820 kWh KWh RING TURKEY JOINT STOCK COMPANY Manisa 0S8 4.Kisin Kecilikeyosh Mah. Atmet Nazif Zorlu Bulvari No: reson empowered to bind the supplier: Kenichi SAITO 'medium-temperature section. Manager, Quality Assuarance Department TURKEY Vassection. Manager, Quality Assu	dh 0.99 - dh 4.4 kW fh 0.98 - dh 0.98 - fh 4.7 kW fh 0.98 - dh 0.98 - fh 0.98 - dh 0.98 - dh 6.0 kW fill 6.0 kW fill 6.0 kW fill 6.0 kW fill fill fill fill 6.0 kW fill fill fill fill fi	

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.