

DG79V341H33

Seasona efficiency Seasons efficienc Rated Low-te Rated Rated kWh kWh EHSD-****D ✓ A++ 6 126 3834 41 6 6 111 150 5181 2093 54 ✓ A+++ 6 181 2701 41 6 6 135 208 4284 1519 54 UZ-SWM60VAA
 ++++
 6
 184
 2646
 41
 6
 6
 136
 218
 4251
 1453
 54

 ++++
 8
 181
 3599
 41
 8
 8
 141
 219
 5460
 1928
 54
 128 3779 6 6 112 155 5147 2027 54 ~ 8 8 111 162 6890 2584 54 129 5016 ~ ✓ A++ 8 JZ-SWM80VAA 227 5427 1862 54 ERSD-****D ✓ A++ 8 130 4961 41 8 8 112 167 6857 2517 54 ~ A+++ 8 184 3543 41 8 8 142 3636 41 3555 41 128 5053 130 4972 8 8 8 8 2584 54 2517 54 * * A+++ 8 179 A+++ 8 183 8 8 141 8 8 142 219 5493 227 5444 111 112 162 6923 167 6875 < < A++ A++ 41 1928 1862 54 54 UZ-SWM80YAA EHSD-****D ✓ A++ 10 132 6106 41 10 10 109 156 8813 3362 58 ✓ A+++ 10 178 4564 41 10 10 147 223 6575 2369 58 UZ-SWM100VAA
 •
 A++
 10
 134
 6051
 41
 10
 10
 109
 159
 8780
 3286
 68
 •
 A+++
 10
 180
 4509
 41
 10
 10
 147
 229
 6555
 2302
 58

 •
 A++
 10
 132
 6141
 41
 10
 109
 154
 8840
 3405
 58
 •
 A+++
 10
 177
 4600
 41
 10
 10
 147
 229
 6555
 2302
 58

 •
 A++
 10
 132
 6141
 41
 10
 109
 154
 8840
 3405
 58
 •
 A+++
 10
 177
 4600
 41
 10
 10
 146
 219
 6601
 2411
 58

 •
 A++
 10
 133
 6061
 41
 10
 109
 159
 8791
 3308
 58
 •
 A+++
 10
 180
 4519
 41
 10
 ERSD-****D EHSD-****D JZ-SWM100YA ERSD-****
 12
 131
 7450

 12
 132
 7395
 ✓ A++
 ✓ A++
 ✓
 A+++
 12
 177

 ✓
 A+++
 12
 178

 12
 12
 109
 154
 10673
 4115
 58

 12
 12
 109
 157
 10640
 4049
 58

 5566
 41
 12
 12
 141

 5511
 41
 12
 12
 141

 221
 8290
 2882
 58

 227
 8257
 2816
 58
 EHSD-****D 41 UZ-SWM120VAA EHSD-****D ✓ A++ 12 131 7485 41 12 12 109 153 10698 4157 58 ✓ A+++ 12 176 5600 41 12 12 140 218 8316 2922 58 UZ-SWM120YAA ✓ A++ 12 132 7404 41 12 12 109 156 10649 4060 58 ✓ A+++ 12 178 5520 41 12 12 141 226 8267 2825 58 ERSD-****C
 11
 14
 14
 104
 150
 12843
 4893
 58
 ✓
 A+++
 14
 175

 41
 14
 14
 105
 152
 12810
 4826
 58
 ✓
 A+++
 14
 177

 41
 14
 105
 152
 12810
 4826
 58
 ✓
 A+++
 14
 177

 6483
 41
 14
 14
 132
 219
 10250
 3367
 58

 6428
 41
 14
 142
 132
 224
 10217
 3301
 58
 ✓ A++
 ✓ A++ A++ 14 134 8438 JZ-SWM140VA 14 135 8383
 ✔
 A+++
 14
 175

 ✔
 A+++
 14
 177

 ✔
 A++
 14
 134
 8473
 41

 ✔
 A++
 14
 135
 8392
 41

 14
 14
 104
 149
 12867
 4934
 58

 14
 14
 105
 152
 12819
 4837
 58

 6517
 41
 14
 14
 131

 6437
 41
 14
 14
 132

 217
 10275
 3407
 58

 223
 10226
 3310
 58
 UZ-SWM140YAA ✓ A++ 6 129 3761 41 6 6 115 159 4993 1980 54
✓ A+++ 6 184 2655 41 6 6 138 220 4202 1437 54 JZ-SHWM60VA ERSD-****C ✓ A++ 6 131 3706 41 6 6 116 165 4960 1914 54 🗸 A+++ 6 188 2600 41 6 6 139 231 4168 1371 54
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6

 ✔
 A++
 8
 132
 4904
 41

 ✔
 A++
 8
 133
 4849
 41
 JZ-SHWM80VA ERSD-****C
 8
 8
 114
 167
 6737
 2521
 54
 \checkmark A+++
 8
 182
 3588
 41
 8
 8
 145
 225
 5332
 1874
 54

 8
 8
 115
 171
 6689
 2454
 54
 \checkmark A+++
 8
 187
 3487
 41
 8
 8
 146
 233
 5284
 1608
 54

 10
 101
 164
 4272
 3204
 58
 \checkmark A+++
 10
 183
 4444
 41
 10
 104
 149
 236
 6480
 223
 58

 10
 101
 117
 167
 8239
 3138
 58
 \checkmark A+++
 10
 185
 4344
 41
 10
 10
 150
 244
 6447
 2167
 58

 10
 101
 117
 167
 8239
 3138
 58
 \checkmark A+++
 10
 185
 4348
 41
 10
 10
 EHSD-***D ✓ A++ 8 131 4941 41 UZ-SHWM80YAA ✓ A++ 8 133 4860 ✓ A++ 10 136 5936 41 EHSD-****D JZ-SHWM100VAA ERSD-****C ✓ A++ 10 138 5881 41 10 10 117 167 8239 3138 58
 10
 10
 116
 162
 8298
 3246
 58

 10
 10
 116
 162
 8298
 3246
 58

 10
 10
 117
 167
 8250
 3149
 58

 4480
 41
 10
 10
 149
 232
 6508
 2276

 4399
 41
 10
 10
 150
 242
 6459
 2179
 A++ 10 A++ 10 135 5972 137 5891 41 41 **~** A+++ 10 181 A+++ 10 185 58 58 HSD-****C UZ-SHWM100YAA EHSD-****D 12 136 7169 12 12 117 161 9902 3952 58 A+++ 12 179 5481 41 12 12 149 232 7843 2753 58 ✓ A++ 41 ~ UZ-SHWM120VAA
 •
 A++
 12
 138
 7114
 41
 12
 12
 118
 650
 9827
 3995
 56
 •
 A+++
 12
 181
 5426
 41
 12
 12
 150
 238
 7810
 2687
 58

 •
 A++
 12
 136
 7204
 41
 12
 12
 118
 568
 •
 A+++
 12
 181
 5426
 41
 12
 12
 150
 238
 7810
 2687
 58

 •
 A++
 12
 136
 7204
 41
 12
 12
 178
 5516
 41
 12
 149
 228
 7868
 2793
 58

 •
 A++
 12
 137
 7123
 41
 12
 12
 181
 5435
 41
 12
 12
 149
 228
 7868
 2793
 58

 •
 A++
 12
 181
 5435
 58
 •
 A++++
 12
 181
 543 JZ-SHWM120YA RSD-****[EHSD-****D
 14
 14
 115
 156
 11650
 4715
 58

 14
 14
 116
 158
 11617
 4649
 58

 ✓
 A+++
 14
 183

 ✓
 A+++
 14
 184

 6227
 41
 14
 14
 153
 225
 8841
 3279
 58

 6172
 41
 14
 144
 154
 230
 8807
 3212
 58
 14 14 ✓ A++ 141 8021 142 7965 41 41 UZ-SHWM140VAA 154 11674 4757 58 14 141 8055 14 14 115 14 182 6262 41 14 14 153 222 8865 3319 ✓ A++ 41 58 UZ-SHWM140YAA ✓ A+++ 14 184 6181 41 14 14 154 229 8816 3222 58 ✓ A++ 14 142 7974 41 14 14 116 158 11625 4659 58 RSD-****C 2.COMBINATION HEATER For medium-temperature application For low-temperature application 16 17 18 19 20 21 22 23 24 25 4 5 6 5 6 7 8 9 10 11 12 13 14 15 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 y consumption climate conditions heating energy average climate etficiency conditions ficiency onditions energy climate efficiency conditions efficiency conditions energy dimate ficiency ditions fficiency onditions older l energy climate ndoor under nditions under unit heating warmer snergy el climate c nergy 6 eatin varmer energy energy limate (d profile Indoor neat output u conditions heat output u output sat output conditions heat outpu space e heatir nergy c space electricity verage o al space sy under space space leating rarmer older For water annual elt under ave Seasonal v efficiency t conditions For space annual en For space For space annual en under water annual en annual en annual en annual en annual en ceficiency cesconal efficiency conditions Seasonal efficiency For space annual er average of annual el annual el seconal ficiency condition Declared Seasons efficienc Rated h For spac annual e under oc annual e For wati annual e For wati annual e under o Seasona efficienc condition Season efficient conditio Rated h average Rated h Declare Rated h Water Water under Water Water class Water under Water under -mokW kWh kW kWh kW
 kW
 kWh
 kWh
 kWh
 kWh

 6
 6
 5181
 2093
 1060
 846
 ✓ L A+++ A+ 6 2701 880 181 134 41 ✓ L A++ A+ 6 3834 880 126 134 41 111 150 105 135 54 6 6 4284 1519 1060 846 135 208 105 135 54 L A++ A+ 6 3779 880 128 134
 ✓
 L
 A+++
 A+
 6
 2646
 880
 184
 134

 ✓
 L
 A+++
 A+
 6
 2701
 898
 181
 134

 ✓
 L
 A+++
 A+
 6
 2646
 898
 181
 134

 ✓
 L
 A+++
 A+
 6
 2646
 898
 184
 134
 ERST17D-****D ~ 41 6 6 5147 2027 1060 846 112 155 105 135 54 6 2646 880 184 134 41 6 6 4251 1453 1060 846 136 218 105 135 54 EHST20D-*
 ✓
 L
 A++
 A+
 6
 3834

 ✓
 L
 A++
 A+
 6
 3779

 898
 126
 134

 898
 128
 134

 6
 6
 5181

 6
 6
 5147

 2021
 1000
 840

 2093
 1044
 841

 2027
 1044
 841

 112
 166
 166
 166
 64

 111
 150
 109
 139
 54

 112
 155
 109
 139
 54

 6
 6
 4284
 1519

 6
 6
 4251
 1453

 1000
 040
 100
 100
 100
 100
 100
 100

 1044
 841
 135
 208
 109
 139
 54

 1044
 841
 136
 218
 109
 139
 54
 41 41 41 41 UZ-SWM60VA A+ 6 3834 1404 126 133 111 150 111 155 54 EHST30D-****C ✓ XL A++ 41 6 6 5181 2093 1650 1232 ~ XL A+++ A+ 6 2701 1404 181 133 41 6 6 4284 1519 1650 1232 135 208 111 155 54
 ✓
 XL
 A+++
 A+
 6
 2/10
 1/404
 181
 1.33
 41

 ✓
 XL
 A+++
 A+
 6
 2/40
 1/404
 184
 133
 41

 ✓
 L
 A+++
 A+
 8
 3599
 880
 181
 133
 41

 ✓
 L
 A+++
 A+
 8
 3599
 880
 181
 134
 41

 ✓
 L
 A+++
 A+
 8
 3599
 880
 184
 134
 41

 ✓
 L
 A+++
 A+
 8
 3599
 898
 184
 134
 41

 ✓
 L
 A+++
 A+
 8
 3599
 1404
 181
 133
 41

 ✓
 XL
 A+++
 A+
 8
 3599
 1404
 181
 133
 41

 ✓
 XL
 A+++
 A+
 8
 3599
 1404
 181
 133
 41
 ERST30D-** EHST17D-**
 ×
 XL
 A++
 A+
 6
 3779

 ×
 L
 A++
 A+
 8
 5016

 ×
 L
 A++
 A+
 8
 4961

 1404
 128
 133
 41

 880
 129
 134
 41

 6
 6
 5147
 2027
 1650
 1232

 8
 8
 6890
 2584
 1060
 846

 8
 8
 6857
 2517
 1060
 846

 2027
 1650
 1232

 2584
 1060
 846

 111
 130
 111
 133
 54

 112
 155
 111
 155
 54

 111
 162
 105
 135
 54

 112
 167
 105
 135
 54

 6
 6
 4251
 1453

 8
 8
 5460
 1928

 1650
 1232
 136
 218
 111
 155
 54

 1060
 846
 141
 219
 105
 135
 54
 ERST17D-****0 880 130 134 41 8 8 5427 1862 1060 846 142 227 105 135 54
 8
 8
 6890

 8
 8
 6857
 EHST20D-*** ERST20D-***
 ✓
 L
 A++
 A+
 8
 5016

 ✓
 L
 A++
 A+
 8
 4961

 ✓
 XL
 A++
 A+
 8
 5016

 898
 129
 134
 41

 898
 130
 134
 41

 2584
 1044
 841

 2517
 1044
 841

 2584
 1650
 1232

 111
 162
 109
 139
 54

 112
 167
 109
 139
 54

 111
 162
 111
 155
 54

 8
 8
 5460
 1928

 8
 8
 5460
 1928

 8
 8
 5427
 1862

 8
 8
 5460
 1928

 1044
 841
 141
 219
 109
 139
 54

 1044
 841
 142
 227
 109
 139
 54

 1650
 1232
 141
 219
 111
 155
 54
 UZ-SWM80VA EHST30D-****[1404 129 133 41 8 8 6890
 ★
 λ+
 λ+
 δ
 5016

 ✓
 XL
 A++
 A+
 δ
 9016

 ✓
 L
 A++
 A+
 δ
 4961

 ✓
 L
 A++
 A+
 δ
 5053

 ✓
 L
 A++
 A+
 δ
 4972

 ✓
 L
 A++
 A+
 δ
 5053

 ✓
 L
 A++
 A+
 δ
 9072

 1404
 125
 135
 41

 1404
 130
 133
 41

 880
 128
 134
 41

 880
 130
 134
 41

 111
 162
 111
 155
 54

 112
 167
 111
 155
 54

 111
 162
 105
 135
 54

 112
 167
 105
 135
 54

 111
 162
 105
 135
 54

 111
 162
 109
 139
 54

 111
 162
 109
 139
 54

 112
 167
 109
 139
 54

 114
 162
 109
 139
 54
 ERST30D-* EHST17D-*
 8
 8
 6857

 8
 8
 6923

 8
 8
 6875

 2517
 1650
 1232

 2584
 1060
 846

 2517
 1060
 846

 ✓
 XL
 A+++
 A+
 8
 3643
 1404
 184
 133
 41

 ✓
 L
 A+++
 A+
 8
 3636
 880
 179
 134
 41

 ✓
 L
 A+++
 A+
 8
 3555
 880
 183
 134
 41

 8
 8
 5427
 1862
 1650
 1232
 142
 227
 111
 155
 54

 8
 8
 5493
 1928
 1060
 846
 141
 219
 105
 135
 54

 8
 8
 5444
 1862
 1060
 846
 142
 227
 105
 135
 54
 ERST17D-****
 898
 128
 134
 41

 898
 130
 134
 41
 8 8 6923 8 8 6875
 2584
 1044
 841

 2517
 1044
 841

 ✓
 L
 A+++
 A+
 8
 3636
 898
 179
 134

 ✓
 L
 A+++
 A+
 8
 3555
 898
 183
 134

 8
 8
 5493
 1928

 8
 8
 5444
 1862

 1044
 841
 141
 219
 109
 139
 54

 1044
 841
 142
 227
 109
 139
 54
 HST20D-** 41 UZ-SWM80YAA ST20D-* 41
 XL
 A+++
 A+
 B
 368
 1404
 170
 133
 41

 ✓
 XL
 A+++
 A+
 B
 3635
 1404
 170
 133
 41

 ✓
 L
 A+++
 A+
 B
 3655
 1404
 178
 133
 41

 ✓
 L
 A+++
 A+
 10
 4564
 898
 178
 134
 41

 ✓
 L
 A+++
 A+
 10
 4564
 898
 180
 134
 41

 ✓
 L
 A+++
 A+
 10
 4564
 1404
 178
 133
 41

 ✓
 XL
 A+++
 A+
 10
 4509
 1404
 180
 133
 41

 ✓
 XL
 A+++
 A+
 10
 4509
 1404
 180
 133
 41

 ✓
 XL
 A+++
 A+
 10
 4509
 609
 173
 34
 41

</tabu/> EHST30D-* ✓ XL A++ A+ 8 5053 1404 128 133 41 8 8 6923 2584 1650 1232 111 162 111 155 54 8 8 5493 1928 1650 1232 141 219 111 155 54
 2594
 1630
 1232
 111
 162
 111
 153
 54

 2517
 1650
 1232
 112
 1167
 111
 155
 54

 3362
 1044
 841
 109
 156
 1109
 139
 58

 3266
 1044
 841
 109
 156
 111
 155
 54

 3282
 1650
 1232
 109
 156
 111
 155
 58

 3296
 1650
 1232
 109
 156
 111
 155
 58

 ✓
 XL
 A++
 A+
 8
 4972

 ✓
 L
 A++
 A+
 10
 6106

 ✓
 L
 A++
 A+
 10
 6051

 ✓
 L
 A++
 A+
 10
 6051

 1404
 130
 133
 41

 898
 132
 134
 41

 898
 134
 134
 41

 8
 8
 6875

 10
 10
 8813

 6
 6
 6
 6
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 <th7</th>
 <th7</th>
 <th7</th>
 <th7</th>
 ERST30D-* EHST20D-* ERST20D-*** 10 10 8780 UZ-SWM100VAA ✓ XL A++
 ✓ XL A++ A+ 10 A+ 10 10 8813 10 8780
 1232
 147
 223

 1232
 147
 229
 111 155 111 155 HST30D-*** ~ 6106 1404 132 133 133 41 10 10 10 10 10 6575 2369 1650 58 58 A++ 6555 2302
 3405
 104
 841
 109
 154
 109
 139
 58

 3308
 1044
 841
 109
 159
 109
 139
 58

 3405
 1565
 1232
 109
 154
 111
 155
 58

 3405
 1650
 1232
 109
 154
 111
 155
 58
 EHST20D-**** ✓ L A++ A+ 10 6141 898 132 134 41 10 10 8840 ✓ L A+++ A+ 10 4600 898 177 134 41 10 10 6601 2411 1044 841 146 219 109 139 58 A+ 10 A+ 10
 10
 8791

 10
 8840

 ↓
 L
 A+++
 A+
 10
 4519
 898
 180
 134

 ✓
 XL
 A+++
 A+
 10
 4600
 1404
 177
 133

 ✓
 XL
 A+++
 A+
 10
 4519
 1404
 180
 133

 10
 10
 6665
 2314
 1044
 841
 147
 228
 109
 139
 58

 10
 10
 6601
 2411
 1650
 1232
 146
 219
 111
 155
 58

 10
 10
 6565
 2314
 1650
 1232
 146
 219
 111
 155
 58

 10
 10
 6565
 2314
 1650
 1232
 147
 228
 111
 155
 58
 ERST20D-**** A++ 6061 898 133 134 41 41 ~ 10 JZ-SWM100YA HST30D-* 6141 1404 132 RST30D-*** ✓ XL A++ A+ 10 6061 1404 133 133 41 10 10 8791 3308 1650 1232 109 159 111 155 58 41 EHST20D-**** ERST20D-**** EHST30D-****
 ✓
 L
 A++
 A+
 12
 7450

 ✓
 L
 A++
 A+
 12
 7395

 ✓
 XL
 A++
 A+
 12
 7395

 898
 131
 134
 41

 898
 132
 134
 41

 1404
 131
 133
 41

 12
 102
 10673
 4115
 1044
 841
 109
 154
 109
 139
 58

 12
 12
 10640
 4049
 1044
 841
 109
 157
 109
 139
 58

 12
 12
 10640
 4049
 1044
 841
 109
 157
 109
 139
 58

 12
 12
 10673
 4115
 1650
 1232
 109
 154
 111
 155
 58

 ✔
 L
 A+++
 A+
 12
 5566
 898
 177
 134
 41

 ✔
 L
 A+++
 A+
 12
 5511
 898
 178
 134
 41

 ✔
 XL
 A+++
 A+
 12
 5566
 1404
 177
 133
 41

 12
 12
 8290
 2882
 1044
 841
 141
 221
 109
 139
 58

 12
 12
 8257
 2816
 1044
 841
 141
 227
 109
 139
 58

 12
 12
 8290
 2882
 1650
 1232
 141
 227
 109
 139
 58
 UZ-SWM120VA ERST30D-* XL A+ 12 7395 1404 132 133 12 10640 4049 1650 1232 109 157 111 155 58 XL A+++ A+ 5511 1404 178 133 41 12 8257 2816 1650 1232 141 227 111 155 58 A++ 41 ~ 12 12
 V
 L
 A++
 A+
 12

 V
 L
 A++
 A+
 12

 V
 L
 A++
 A+
 12

 V
 XL
 A++
 A+
 12
 7485 7404
 898
 131
 134

 898
 132
 134

 12
 12
 10640

 12
 12
 10698

 12
 12
 10649

 4040
 1088
 1282

 4157
 1044
 841

 4060
 1044
 841

 109
 153
 109
 139
 58

 109
 156
 109
 139
 58

 109
 156
 109
 139
 58

 109
 153
 111
 155
 58

 ✓
 L
 A+++
 A+
 12
 5600
 898
 176
 134

 ✓
 L
 A+++
 A+
 12
 5520
 898
 178
 134

 ✓
 L
 A+++
 A+
 12
 5500
 1404
 176
 133

 12
 12
 8316
 2922

 12
 12
 8267
 2825

 1000
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 10111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 101111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 1011111
 10111111
 10111111
 10111111
 10111111
 10111111
 101111111
 1011111111
 101111111111
 101111111111111
 101111111 41 41 41 41 RST20D-*** UZ-SWM120YAA EHST30D-****[7485 1404 131 133 41 12 12 10698 4157 1650 1232 41 12 12 8316 2922 1650 1232 140 218 111 155 58
 ✓
 XL
 A++
 A+
 12
 7404

 ✓
 L
 A++
 A+
 14
 8438

 1404
 132
 133
 41

 965
 134
 123
 41

 12
 12
 13833

 12
 12
 10649

 14
 14
 12843

 4060
 1650
 1232

 4893
 1070
 888

 100
 150
 111
 155
 58

 109
 156
 111
 155
 58

 104
 150
 105
 130
 58

 105
 152
 105
 130
 58

 XL
 A+++
 A+
 12
 5526
 164
 175
 133
 411

 L
 L
 A+++
 A+
 14
 6483
 965
 175
 123
 411

 L
 L
 A+++
 A+
 14
 6428
 965
 177
 123
 411

 12
 12
 0010
 1312

 12
 12
 8267
 2825

 14
 14
 10250
 3367

 1650
 122
 141
 226
 111
 155
 58

 1070
 888
 132
 219
 105
 130
 58

 1070
 888
 132
 224
 105
 130
 58
 RST30D-IST20D-* ERST20D-****[~ A++ A+ 14 8383 965 135 123 41 14 14 12810 4826 1070 888 14 14 10217 3301 L * * UZ-SWM140VAA A 14 8438 A 14 8383
 1610
 134

 1610
 135

 14
 14
 12843
 4893
 1755
 1434

 14
 14
 12810
 4826
 1755
 1434

 100
 100
 100
 100
 100

 104
 150
 104
 130
 58

 105
 152
 104
 130
 58

 XL
 A+++
 A
 14
 6483
 1610

 XL
 A+++
 A
 14
 6428
 1610
 14 14
 14
 10250
 3367
 1755
 1434
 132
 219
 104
 130
 58

 14
 10217
 3301
 1755
 1434
 132
 224
 104
 130
 58
 EHST30D-* XL A++ XL A++ 114 41 114 41 175 114 177 114 41 ~ 41 ST30D-
 ✔
 L
 A++
 A+
 14
 8473
 965
 134
 123
 41

 ✔
 L
 A++
 A+
 14
 8392
 965
 135
 123
 41

 ✔
 L
 A++
 A
 14
 8392
 965
 135
 123
 41

 ✔
 XL
 A++
 A
 14
 8473
 1610
 134
 114
 41

 104
 149
 105
 130
 58

 105
 152
 105
 130
 58

 104
 149
 104
 130
 58

 104
 149
 104
 130
 58

 ✓
 L
 A++
 A+
 14
 6517
 965
 175
 123
 41

 ✓
 L
 A+++
 A+
 14
 6437
 965
 177
 123
 41

 ✓
 XL
 A+++
 A
 14
 6517
 1610
 175
 114
 41

 ✓
 XL
 A+++
 A
 14
 6517
 1610
 175
 114
 41
 EHST20D-14 14 12867 4934 1070 888 14 14 10275 3407 888 131 217 105 130 58 1070
 14
 14
 12819
 4837
 1070
 888

 14
 14
 12867
 4934
 1755
 1434

 14
 14
 10226
 3310
 1070
 888
 132
 223
 105
 130
 58

 14
 14
 10226
 3310
 1070
 888
 132
 223
 105
 130
 58

 14
 14
 10275
 3407
 1755
 1434
 131
 217
 104
 130
 58
 RST20D-* UZ-SWM140YAA ST30D-* ERST30D-* ✓ XL A++ A 14 8392 1610 135 114 41 14 14 12819 4837 1755 1434 105 152 104 130 58 ✓ XL A+++ A 14 6437 1610 177 114 41 14 14 10226 3310 1755 1434 132 223 104 130 58
 1980
 1060
 846

 1914
 1060
 846

 6
 2655
 880

 6
 2600
 880

 846
 138
 220
 105
 135

 846
 139
 231
 105
 135
 EHST17D-****[ERST17D-****[* * A+ 6 A+ 6 880 129 880 131 134 134 6 6 4993 6 6 4960
 115
 159
 105
 135
 54

 116
 165
 105
 135
 54
 L A+++ A+ L A+++ A+ 184 134 188 134
 6
 4202
 1437

 6
 4168
 1371
 1060 1060 3761 3706 41 41 × × 41 6 6 54 54 A++ 41 L
 898
 129
 134

 898
 131
 134

 1404
 129
 133
 1980 1044 841 109 139 54 6 6 4202 1437 1044 841 138 220 109 139 54 EHST20D-* L A++ A+ 6 3761 41 6 6 4993 115 159 ✓ L A+++ A+ 6 2655 898 184 134 41 UZ-SHWM60VA4 A+ 6 A+ 6 6 6 4960 6 6 4993
 1914
 1044
 841

 1980
 1650
 1232

 116
 165
 109
 139
 54

 115
 159
 111
 155
 54
 * * L A+++ A+ 6 2600 898 XL A+++ A+ 6 2655 1404
 6
 4168
 1371

 6
 4202
 1437

 1044
 841
 139
 231
 109
 139

 1650
 1232
 138
 220
 111
 155
 ✓ L ✓ XL 188 134 184 133 6 6 ERST20D-**** A++ 3706 41 41 54 54 ST30D-' 1914 1650 1232 116 165 111 155 54 6 2600 1404 188 133 ERST30D-🖌 XL A++ A+ 6 3706 1404 131 133 41 6 6 4960 ✓ XL A+++ A+ 41 6 6 4168 1371 1650 1232 139 231 111 155 54
 A+
 8
 4904

 A+
 8
 4849

 A+
 8
 4804

 880
 132
 134

 880
 133
 134

 898
 132
 134
 8 8 6705 8 8 6672
 2521
 1060
 846

 2454
 1060
 846

 2521
 1044
 841

 115
 167
 105
 135
 54

 115
 171
 105
 135
 54

 115
 167
 109
 139
 54
 * * *
 L
 A+++
 A+
 B
 3530
 Ref
 160
 100

 L
 A+++
 A+
 B
 3530
 880
 184
 134

 L
 A+++
 A+
 B
 3530
 898
 184
 134

 L
 A+++
 A+
 B
 3530
 898
 184
 134

 8
 8
 529
 1874
 1060
 846
 146
 225
 105
 135
 54

 8
 8
 5266
 1808
 1060
 846
 147
 233
 105
 135
 54

 8
 8
 5299
 1874
 1044
 841
 146
 225
 109
 139
 54
 EHST17D-**** ERST17D-**** ~ A++ 41 41 41 L 8 8 6705 ~ 41 EHST20D-*** L A++ 41 UZ-SHWM80VAA A+ 8 A+ 8 115 171 115 167
 109
 139
 54

 111
 155
 54
 L A+++ A+ XL A+++ A+
 8
 8
 5266
 1808
 1044
 841
 147
 233
 109
 139
 54

 8
 8
 5299
 1874
 1650
 1232
 146
 225
 111
 155
 54

 8
 8
 5266
 1808
 1650
 1232
 147
 233
 111
 155
 54
 RST20D-*** ~ 4849 898 133 134 41 6672 2454 1044 841 8 3475 898 187 134 41 L A++ 8 8 ~ ✓ XL A+++ A+ 8 3530 1404 184 133
 ✓ XL A+++ A+ 8 3475 1404 187 133 1650

 For low-temperature application

 9
 13
 15
 16
 21

at output onditions

energy climate

. output viditions space h under ci

22 17 18 25

4

space

6 8 11

nergy limate

pace

Mitsubishi Electric Erp Directive Related Product Information: erp.mitsubishielectric.eu/erp PRODUCT FICHE Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals This information is based on EU regulation No 811/2013 and No 813/2013.

nergy dimate

space

Inder

space

 6
 8
 11
 9
 13
 15
 16
 21
 22
 17
 18
 25

at output pnditions output ditions g energy climate

heatin colder

space

DG79A02MH01

1.SPACE HEATER

Init

Outdoc

unit

Indoor I

HST30D-*

RST30D-

EHST17D-***

ERST20D-****

ST30D-

RST17D-HST20D-**

UZ-SHWM80YAA

XL

🖌 XL

4904

 ✓
 L
 A++
 A+
 8
 4941
 880
 131
 134
 41

 ✓
 L
 A++
 A+
 8
 4860
 880
 133
 134
 41

 ✓
 L
 A++
 A+
 8
 4941
 88
 131
 134
 41

 ✓
 L
 A++
 A+
 8
 4941
 88
 131
 134
 41

 ✓
 L
 A++
 A+
 8
 4960
 898
 133
 134
 41

 ✓
 L
 A++
 A+
 8
 4960
 898
 133
 134
 41

 ✓
 XL
 A++
 A+
 8
 4941
 1404
 131
 133
 41

 ✓
 XL
 A++
 A+
 8
 4860
 1404
 133
 133
 41

A++ A+ 8 4849

1404 132

133

1404 133 133 41

8 8 6705

8 8 6672

8 8 6689 8 8 6737

2521

2454 1650 1232

 8
 8
 6737
 2521
 1060
 846
 114
 167
 105
 135
 54

 8
 8
 6689
 2454
 1060
 846
 114
 167
 105
 135
 54

 8
 8
 6689
 2454
 1060
 846
 114
 167
 105
 135
 54

 8
 8
 6689
 2454
 1044
 841
 115
 171
 105
 135
 54

 8
 8
 6689
 2454
 1044
 841
 115
 171
 109
 139
 54

 8
 8
 6737
 2521
 1650
 1232
 114
 167
 111
 155
 54

 8
 8
 6689
 2454
 1650
 1232
 115
 171
 111
 155
 54

	EHST20D-****D	~	L A+	++	A+ 10	59	36 8	98	136	134 41	-	10	10	8272	3204	1044	841	116	164	109	139	58	~	L .	A+++	A+ 1	0 4444	898	183	134	41	- 10	10	6480	2233	1044	841	149	236	109	139	58
PUZ-SHWM100VAA	ERST20D-****D	~	L A+	++	A+ 10	58	81 8	98	138	134 41	-	10	10	8239	3138	1044	841	117	167	109	139	58	~	L .	4 +++	A+ 1	0 4389	898	185	134	41	- 10	10	6447	2167	1044	841	150	244	109	139	58
PUZ-SHVVM100VAA	EHST30D-****D	~	XL A+	++	A+ 10	59	36 14	404	136	133 41	-	10	10	8272	3204	1650	1232	116	164	111	155	58	~	XL .	Q+++	A+ 1	0 4444	1404	183	133	41	- 10	10	6480	2233	1650	1232	149	236	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 10	58	81 14	404	138	133 41	-	10	10	8239	3138	1650	1232	117	167	111	155	58	~	XL .	A+++	A+ 1	0 4389	1404	185	133	41	- 10	10	6447	2167	1650	1232	150	244	111	155	58
	EHST20D-****D	~	L A+	++	A+ 10	59	72 8	98	135	134 41	-	10	10	8298	3246	1044	841	116	162	109	139	58	~	L.	Q+++	A+ 1	0 4480	898	181	134	41	- 10	10	6508	2276	1044	841	149	232	109	139	58
	ERST20D-****D	~	L A+	++	A+ 10	58	91 8	98	137 '	134 41	-	10	10	8250	3149	1044	841	117	167	109	139	58	~	L.	4 +++	A+ 1	0 4399	898	185	134	41	- 10	10	6459	2179	1044	841	150	242	109	139	58
PUZ-SHWM100YAA	EHST30D-****D	~	XL A+	++	A+ 10	59	72 14	404	135 *	133 41	-	10	10	8298	3246	1650	1232	116	162	111	155	58	~	XL .	Q+++	A+ 1	0 4480	1404	181	133	41	- 10	10	6508	2276	1650	1232	149	232	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 10	58	91 14	404	137 '	133 41	-	10	10	8250	3149	1650	1232	117	167	111	155	58	~	XL .	A+++	A+ 1	0 4399	1404	185	133	41	- 10	10	6459	2179	1650	1232	150	242	111	155	58
	EHST20D-****D	~	L A+	++	A+ 12	71	69 8	98	136	134 41	-	12	12	9902	3952	1044	841	117	161	109	139	58	~	L.	4+++	A+ 1	2 5481	898	179	134	41	- 12	12	7843	2753	1044	841	149	232	109	139	58
	ERST20D-****D	~	L A+	++	A+ 12	71	14 8	98	138	134 41	-	12	12	9869	3886	1044	841	118	163	109	139	58	~	L.	A+++	A+ 1	2 5426	898	181	134	41	- 12	12	7810	2687	1044	841	150	238	109	139	58
PUZ-SHWM120VAA	EHST30D-****D	~	XL A+	++	A+ 12	71	69 14	404	136	133 41	-	12	12	9902	3952	1650	1232	117	161	111	155	58	~	XL .	A+++	A+ 1	2 5481	1404	179	133	41	- 12	12	7843	2753	1650	1232	149	232	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 12	71	14 14	404	138	133 41	-	12	12	9869	3886	1650	1232	118	163	111	155	58	~	XL .	Q+++	A+ 1	2 5426	1404	181	133	41	- 12	12	7810	2687	1650	1232	150	238	111	155	58
	EHST20D-****D	~	L A+	++	A+ 12	72	04 8	98	136	134 41	-	12	12	9927	3995	1044	841	117	159	109	139	58	~	L.	4+++	A+ 1	2 5516	898	178	134	41	- 12	12	7868	2793	1044	841	149	228	109	139	58
	ERST20D-****D	~	L A+	++	A+ 12	71	23 8	98	137	134 41	-	12	12	9878	3898	1044	841	118	163	109	139	58	~	L.	4+++	A+ 1	2 5435	898	181	134	41	- 12	12	7819	2696	1044	841	150	237	109	139	58
PUZ-SHWM120YAA	EHST30D-****D	~	XL A+	++	A+ 12	72	04 14	404	136	133 41	-	12	12	9927	3995	1650	1232	117	159	111	155	58	~	XL .	4+++	A+ 1	2 5516	1404	178	133	41	- 12	12	7868	2793	1650	1232	149	228	111	155	58
	ERST30D-****D	~	XL A+	++	A+ 12	71:	23 14	404	137 *	133 41	-	12	12	9878	3898	1650	1232	118	163	111	155	58	~	XL .	4+++	A+ 1	2 5435	1404	181	133	41	- 12	12	7819	2696	1650	1232	150	237	111	155	58
	EHST20D-****D	~	L A+	++	A+ 14	80	21 9	65	141	123 41	-	14	14	11650	4715	1070	888	115	156	105	130	58	~	L.	Q+++	A+ 1	4 6227	965	183	123	41	- 14	14	8841	3279	1070	888	153	225	105	130	58
	ERST20D-****D	~	L A+	++	A+ 14	79	65 9	65	142	123 41	-	14	14	11617	4649	1070	888	116	158	105	130	58	~	L.	A+++	A+ 1	4 6172	965	184	123	41	- 14	14	8807	3212	1070	888	154	230	105	130	58
PUZ-SHWM140VAA	EHST30D-****D	~	XL A+	++	A 14	80	21 10	610	141	114 41	-	14	14	11650	4715	1755	1434	115	156	104	130	58	~	XL .	Q+++	A 1	4 6227	1610	183	114	41	- 14	14	8841	3279	1755	1434	153	225	104	130	58
	ERST30D-****D	~	XL A+	++	A 14	79	65 16	610	142	114 41	-	14	14	11617	4649	1755	1434	116	158	104	130	58	~	XL	4+++	A 1	4 6172	1610	184	114	41	- 14	14	8807	3212	1755	1434	154	230	104	130	58
	EHST20D-****D	~	L A+	++	A+ 14	80	55 9	65	141	123 41	-	14	14	11674	4757	1070	888	115	154	105	130	58	~	L.	Q+++	A+ 1	4 6262	965	182	123	41	- 14	14	8865	3319	1070	888	153	222	105	130	58
	ERST20D-****D	~	L A+	++	A+ 14	79	74 9	65	142 .	123 41	-	14	14	11625	4659	1070	888	116	158	105	130	58	~	L.	4+++	A+ 1	4 6181	965	184	123	41	- 14	14	8816	3222	1070	888	154	229	105	130	58
PUZ-SHWM140YAA	EHST30D-****D	~	XL A+	++	A 14	80	55 16	610	141	114 41	-	14	14	11674	4757	1755	1434	115	154	104	130	58	~	XL .	Q+++	A 1	4 6262	1610	182	114	41	- 14	14	8865	3319	1755	1434	153	222	104	130	58
	ERST30D-****D	~	XL A+	++	A 14	79	74 16	610	142	114 41	-	14	14	11625	4659	1755	1434	116	158	104	130	58	~	XL	Q+++	A 1	4 6181	1610	184	114	41	- 14	14	8816		1755	1434	154	229	104	130	58

115 171 111 155 54

41

 8
 8
 5332
 1874
 1060
 846
 145
 225
 105
 135
 54

 8
 8
 5284
 1808
 1060
 846
 146
 233
 105
 135
 54

 8
 8
 5332
 1874
 1044
 841
 145
 225
 109
 139
 54

 8
 8
 5284
 1808
 1044
 841
 146
 233
 109
 139
 54

54 54

 8
 8
 532
 1874
 1650
 1232
 145
 223
 109
 135

 8
 8
 5332
 1874
 1650
 1232
 145
 225
 111
 155

 8
 8
 5284
 1808
 1650
 1232
 146
 233
 111
 155

 8
 8
 5284
 1808

 8
 8
 5332
 1874

8

 ✓
 L
 A+++
 A+
 8
 3568
 880
 182
 134
 41

 ✓
 L
 A+++
 A+
 8
 3487
 880
 187
 134
 41

 ✓
 L
 A+++
 A+
 8
 3467
 880
 187
 134
 41

 ✓
 L
 A+++
 A+
 8
 3568
 898
 182
 134
 41

 L
 A+++
 A+
 B
 3487
 898
 187
 134
 41

 ✓
 XL
 A+++
 A+
 B
 3568
 1404
 182
 133
 41

 ✓
 XL
 A+++
 A+
 B
 3487
 1404
 182
 133
 41

C)
G)
1	1
3	Ś
Ī	>
Ć	>
Ň	5
<	-
=	2
C	
_	2

Construction Construction<	English Rederlands suomi 1 Duideoor unit	Deutsch Svenska Čeština Außengerät	Français Dansk Български Unité exterieure
	Juliceunit Ulkoyksikkö	Venkovní jednotka	Udenders enhed BъHumdors nne
Name Name <th< td=""><td>binnenu Sisävks</td><td>Inonhusenhet Inonhusenhet Voikis i sokoko</td><td>Indendors enhed</td></th<>	binnenu Sisävks	Inonhusenhet Inonhusenhet Voikis i sokoko	Indendors enhed
	Sussy same Medium-temperature application Medium-temperature application	Mitellemperaturanwendung modium/angenaturanwil/ation	l'application à moyenne température Invivéntement annuertatione
Constrained SectionConstrained 	keski	menunnemperaturappinatuuri stredněteplotní aplikace	плисиетилиритациталититисизет среднотемпературното приложение
NumberConstruction <th< td=""><td>Low-</td><td>Niedertemperaturanwendung lågtemperaturapplikation</td><td>l'application à basse température lavtemperaturanvendelsen</td></th<>	Low-	Niedertemperaturanwendung lågtemperaturapplikation	l'application à basse température lavtemperaturanvendelsen
Description	mata	nizkoteplotni aplikace Anorodonaa I astronfi	9 4
Neuronal and any and a subject of the subje	Opg	Angegebenes Lastprofi Deklarerad belastningsprofil	우오
Control Control <t< td=""><td>Ilmo</td><td>Deklarovaný zátěžový profil Jih Khonov filr říla jahrasozlitharlinota Raumhaizunne.Enarrilaaffizianz</td><td>Обявен товаров профил In Alaron Alafficanité ánarvátivula saiconniára, nour la chauffane des locaux</td></t<>	Ilmo	Deklarovaný zátěžový profil Jih Khonov filr říla jahrasozlitharlinota Raumhaizunne.Enarrilaaffizianz	Обявен товаров профил In Alaron Alafficanité ánarvátivula saiconniára, nour la chauffane des locaux
Construction End of a constrution End o	de seizoensg	die Klasse nur die Jahreszeittedingte kaummerzungs-Energieerinzenz säsongsrelaterade energieffektivitetsklass vid rumsuppvärmning	la classe d'emcacite energetique saisonniere, pour le criauriage ues iucaux klassen for årsvirkningsgrad ved rumopvarmning
Barter de Bar	tilalämmityks Water heatin	3 0	класът на сезонната отоплителна енергийна ефективност la rlasse rl'efficacité énercéticue. cour le chaufface de l'eau
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>	de energie-et	energieffektivitetsklass vid vattenuppvärmning	- arsvirkningsgrad ved vandopvarmning
Bern Reserved Subjects Bern Reserved Subjects<	vedenlä Rated h	třída energetické účinnosti ohřevu vody die Wärmenennleistung bei durchschnittlichen Klimaverhältnissen	енергийната ефективност при подгряване ce thermique nominale dans les conditions cli
Construction Construction<	de nominale warmteafgifte(onder gemiddelde klimaat	Den nominella avgivna värmeeffekten(under genomsnittliga klimatförhållanden)	elle nytteeffekt(under gennemsnitlige klimafo
Number Number<	inmasto-olosunte	vykon(za prumernych kiimatickych podminek) ing, den jährlichen Energieverbrauch bei durchschnittlichen Klim	ата топлинна мощност(при средни климатични условия) uffage des locaux, la consommation annuelle d'énergie(dans
Numerical (No. 1) Contrast (No. 1) <thcontrast (no.="" 1)<="" th=""> <thcontrast (no.="" 1)<="" <="" td=""><td>voor ruimtevenvarming het iaarliikse energieverbruik(onder gemiddelde</td><td>suppyärmning ärlig energiförbri kning/vid genomsnittliga klimatförbållande</td><td>s moyennes) armning det årlige energiforbrug(under gennemsnitlige klimaf</td></thcontrast></thcontrast>	voor ruimtevenvarming het iaarliikse energieverbruik(onder gemiddelde	suppyärmning ärlig energiförbri kning/vid genomsnittliga klimatförbållande	s moyennes) armning det årlige energiforbrug(under gennemsnitlige klimaf
Name Name <th< td=""><td>voor runnever warming, riet jaanijkse energieveruruik(viriver gerinduerve klimaatomstandigheden) klimaatomstandigheden</td><td>supprentiming, and energinoronaning via genoritoritoritaria.</td><td>runiopvaniming aat aninga anarginon nagumara gammananiminga kiintaron noon)</td></th<>	voor runnever warming, riet jaanijkse energieveruruik(viriver gerinduerve klimaatomstandigheden) klimaatomstandigheden	supprentiming, and energinoronaning via genoritoritoritaria.	runiopvaniming aat aninga anarginon nagumara gammananiminga kiintaron noon)
Sector Sector<	skimääräisissä ilmasto-olosuhteissa)	roční spotřeba energie za průměrných klima	отопление, годишното потребление на енергия(при средни климатични условия)
Numery of weight weig	annual electricity consumption under average climate conditions	für die Warmwasserbereitung, den jährlichen Stromverbrauch bei durchschnittlichen Klimaverhältnissen	ur le chauffage de l'eau, la consommation annuelle d'électricité(dans les conditions natiques moyennes)
Construction </td <td>voor waterverwarming, het jaarlijkse elektriciteitsverbruik(onder gemiddelde klimaatomstandicheden)</td> <td>ärmning, årlig elförbruknir</td> <td>vandopvarmning det</td>	voor waterverwarming, het jaarlijkse elektriciteitsverbruik(onder gemiddelde klimaatomstandicheden)	ärmning, årlig elförbruknir	vandopvarmning det
Constrained by any direct years of priority for any opping	mmaatomasamagineaan) vedenlänmityksestä vuotuinen sähkönkulutus(keskimääräisissä ilmasto-olosuhteissa)	ohřev vody – roční spotřeba elektrické energie za	за подгряване на вода, годишното потребление(при средни климатични условия)
Construction </td <td></td> <td>jahreszeitbedingte Raumheizungs-Energieeffizienz bei durchschnittlichen Klima</td> <td>ve saisonnière pour le chauffage des locaux(dans les</td>		jahreszeitbedingte Raumheizungs-Energieeffizienz bei durchschnittlichen Klima	ve saisonnière pour le chauffage des locaux(dans les
NetworkAnd service of a service	de seizoensgebonden energie-efficiëntie voor ruimteverwarming(onder	medelverkningsgrad för rumsuppvärmning(vid genomsnittliga klimatförhållar	es) ved rumopvarmning(under gennemsnitlige klimaforhold)
Operation Operation <t< td=""><td>klimaatomstandigheden) tilalämmityksen kausittainen energiatehokkuus(keskimääräisissä ilm</td><td>nnost vytápění za průměrných klimatických podmínek</td><td>на ефективност при отопление(при средни климатични условия)</td></t<>	klimaatomstandigheden) tilalämmityksen kausittainen energiatehokkuus(keskimääräisissä ilm	nnost vytápění za průměrných klimatických podmínek	на ефективност при отопление(при средни климатични условия)
Canada a dialong a manung a dialong and dialong and dialong and a dialong and dialong and a dialong and d	Water heating energy efficiency under average climate conditions	asserbereitungs-Energieeffizienz bei	pour le chauffage de l'eau(dans les conditions climatiques
Cardinal cardi	0	iing(vid genomsnittliga klimatförh	iteten ved vandopvarmning(under gennemsnitlige kli
Description of the property of the pro	<	průměrných klimatických podmír	ефективност при подгряване на вода(при средни климатични услов
But And Constraint Service But Service Service But Service Service But Service Service But Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Servic	Sound power level L _{WA} indoor	der Schallleistungspegel L _{WA} , in Gebäuden	le niveau de puissance acoustique L wa , à l'intérieur
Marcine unity on an environmentBuild and selection belonging in the selection	13 het geluidsvermogensniveau L _{WA} binnen äänitehotaso L _{WA} sisällä	Ljudeftektnivá L _{WA} i inomhus hladina akustického výkonu L _{WA} ve vniťňním prostoru	lydeffektniveauet L _{WA} i inde нивото на звуковата мощност L _{WA} на закрито
Burger and Labor. Many and Burger and Labor. Since and	Work only during off-peak hours	dass ein ausschließlicher Betrieb des Kombiheizgerätes zu Schwachlastzeiten	fonctionner qu'en heures creuses
Balance and and an and a series of an analysis of an analy	14 werken utsluttend in de daluren toimimaan ainoastaan kulutushuippujen ulkopuolella	drīvas uteslutande under perioder med lag belastning provozu pouze mimo špičku	Tungere uden tor spidsbelastningsperioder работи само в часовете извън върховото натоварване
Citery and with a binary balance from an under the second of the seco	Rated heat output under colder climate conditions 15 Ide nominale warmteafgifte, onder koudere klimaatomstandigheden	die Wärmenennleistung bei kälteren Klimaverhältnissen Nominell avgiven värmeeffekt vid kallare klimatförhållanden	la puissance thermique nominale, dans les conditions climatiques plus froides den nominelle nytteeffekt under koldere klimaforhold
Constraint Constra	nimellislämpöteho, kylmissä	chladnějších klimati	номиналната топлинна мощност при по-студени климатични усповия la ruissance therminue nominale dance les conditions climaticues plus chaudes
Construction Construction<	kated neat output under wa de nominale warmteafgifte,	ekt vid varmare klima	lia puissance mermique nominale, dans les conditions climatiques plus chaudes den nominelle nytteeffekt under varmere klimaforhold
number of a number	nimellislämpöteho, lämpimissä ilmasto-olosuhteissa Eor space heating annual energy consumption under colder clin	výkon za teplejších klimatických podmínek una der išbrliche Energieverbrauch hei kálteren Klimaverbá	та топлинна мощност при по-топли климатични условия #ало des locality. la consommation annuelle d'énercie, dans les
converte converte converte supercharance superchara	· · · · · · · · · · · · · · · · · · ·		plus froides
Instrume Instrum Instrume Instrume	voor runnieverwanning, net jaariijkse energieverbruik onber klimaatomstandigheden		aer suide eilei diioi bind midei kondele viimaiomidu
For proor handly, a mult energy consumption under warmer dinate conditions End of a family and under grant dinate conditions	tilalämmityksestä vuotuinen energiankulutus kylmissä ilmasto-olosuhteissa		эние, годишното потребление на енергия при по-студени климатични услови
Curr universandEdit number of a number of	rgy consumption under warmer cl	umheizung, der jährliche Energieverbrauch bei wärmeren Klimaverhältnissen	ffage des locaux, la consommation annuelle d'énergie, dans les conditions
Immune memberskellede investige investige <td>voor ruimteverwarming, het jaarlijkse energieverbruik on</td> <td>uppvärmning, årlig energiförbrukning under varmare klimatförhållanden</td> <td>mning det årlige energiforbrug under varmere klimaforhold</td>	voor ruimteverwarming, het jaarlijkse energieverbruik on	uppvärmning, årlig energiförbrukning under varmare klimatförhållanden	mning det årlige energiforbrug under varmere klimaforhold
Event where heading, annual energy consumption under coder of meter condroms End devention an under of electricity, dans he condroms End devention an under of elect	tilal	ápění – roční spotřeba energie za teplejších klimatických podmínek	е, годишното потребление на енергия при по-топли климатични условия
Non-vene-venering: het jaarlike eelkrichekverbrak onder kondere Instance	For water heating, annual energy consumption under colder climate conditions	Warmwasserbereitung, der jährliche	e l'eau, la consommation annuelle d'électricité, dans les conditions
Instrumentangingenin Instrumen	voor waterverv	ssen vattenuppvärmning, årlig elförbrukning	g det årlige elforbrug under koldere klimaforhold
Construction Constructin Construction Construction </td <td>klimaatomstandigheden vedenlämmitvksestä vuotuinen sähkönkulutus kvimissä ilmasto-olosu</td> <td>vodv – roční spotřeba elektrické energie za chladnějších klimati</td> <td>вода, годишното потребление на електроенергия при по-студени кл</td>	klimaatomstandigheden vedenlämmitvksestä vuotuinen sähkönkulutus kvimissä ilmasto-olosu	vodv – roční spotřeba elektrické energie za chladnějších klimati	вода, годишното потребление на електроенергия при по-студени кл
Name Instant I	nergy consumption under warmer climate	rmwasserbereitung, der jährliche Stromverbrauch bei wärmeren	ни условия ни условия chauffage de l'eau, la consommation annuelle d'électricité, dans les conditions
Non-waterwarming, nig annyce eventroeleswarming, ang entrochung under ramae eunancen For vanouvparming, ang entrochung under roma Final experimentation vanouvparming, vanouvparming, ang entrochung For othew rody - rochi spitriba elektrick energies z telejisch klinatolych podmink anauvpaeue augu, roppaeve augustro podrevene elektrick energies z telejisch klinatolych podmink anauvpaeue augu, roppaeve augustro podrevene elektrick energies z telejisch klinatolych podmink remazination <	i oi wara i realing, annuar ana gy consumption unior wanner unnas condutons voor waterverwarning het iaarliikes elektriciteiteverhnik onder warmere	annwasserberending, der Jannindre Onornverbra	natiques plus chaudes vandonvarmning det årlige elfo
wdenilimmitykastä wuluinen sähkörikuluus lämpinisal innasto-olsuhteisapro ohiev vody - notri spotfeba elektride energie za teplejäch kimalickych podminekan narpmaene ne spat, namunoro norpeforeme energiene on podraze nergiene on podraze neregiene on po	voor waterverwarming, net jaarlijkse elektriciteitsverbruik onder warmere klimaatomstandigheden	huppvarmning, arlig eltorbrukning under varma	vandopvarmning det arlige elfororug under varmere klimatorhold
Seasonal space hading energy efficiency under coder climate conditions de jahreszeibednege Effizientis voor ruintevervarming onder koudere Bisangsmedie/koude Ferdige effizientis voor ruintevervarming onder koudere Ferdige effizientis voor ruintevervarming onder koudere konder koudere koud	vedenlämmityksestä vuotuinen sähkönkulutus lämpimissä ilmasto-olosuhteissa	ohřev vody – roční spotřeba elektrické energie za teplejších klimatických podmír	зане на вода, годишното потребление на електроенергия при по-топли клим повия
Geschenzigsborden erergierficiente voor uninterververming onder koudere Sisongsmedelverkningsgreid for rumsupprämming under kalare klimatichallanden Ensistentingsgreiden verzinzengeletentik All ficiencia erergietentik All ficiencia ererergietentik All ficiencia erergietent	Seasonal space heating energy efficiency under colder climate conditions	dingte Raumheizungs-Energieeffizienz bei kälteren Klimaverhältnis:	énergétique saisonnière pour le chauffage des locaux, dans les conditions
Image: Instance Sezonni energieticki účinnost vylapeni za chladnějšich klimatických podmínek Cesonera enerpieticki energieticki v protene npm no-cryzem vrumare vruma voroem klimatorich podmínek Cesonera energieticki v protene npm no-cryzem vrumare Inflienza energietica sag Ge seconeragebonden energie efficiente vor rumevemaming onder varmere Ge seconeragebonden energie efficiente vor rumevemaming onder varmere Sasongsmedelverkningsgrad för rumsupprämming under varmare klimatorihallanden Feficacité énergétique sasonniere pour le chauffage des locaux, dans les conditions Calde Valar heating energy efficiency under colder climate vervemung on der kudee klimatorihalenden Valar heating energy efficiency under valares klimatorihalenden A efficienza energetica di nergeticki účinnost vylapeni za teplejšich klimatických podminek Cervenare elerprive elerverver nergetica di nergeticki účinnost vylapeni za teplejšich klimatických podminek Perpleficiente vor valar verprive elerververver nergetica di nergeticki účinnost on verververververververververververververv	de seizoensgebonden energie-efficiëntie voor ruimteverwarming onder	smedelverkningsgrad för rumsuppvärmni	ved rumopvarmnir
Seasonal space heating energy efficiency under warmer climate conditions de jahreszeitbedingte Raumheizungs-Energieeffizienz bei wärmeren Klimaverhälnissen Fefficacité energietue saisonnière pour le chauffage des locaux, dans les conditions Fefficacité energietues de seizoensgebonden energie-efficientle voor ruimteverwarming onder warmere Säsongsmedelverkningsgrad för rumsupprämming under varmare klimatförhållanden Fefficacité energietues Caudes Ca	kiiritadorristarituigriederi tilalämmityksen kausittainen energiatehokkuus kylmissä ilmasto-olost	nost vytápění za chladnějších klimatických	енергийна ефективност при отопление при по-студени климатични условия
escoresignedclimatiques plus chardesclimatiques plus chardes	mer climate	jahreszelthedinate Raumheizrungs-Energieeffizienz hei wärmeren Klimaverhältniss	ue saisonnière nour le chauffane des locaux dans les conditions
de selzcensgebonden energie-efficientie voor ruimteverwarming onder warmere Sasongsmedelverkningsgrad für rumsupprämming under varmare klimatförhållanden årsvirkningsgraden ved rumspvarming under varmere klimatforhold A eficieria energietica do tillamatomstandigheden sezonni energietick úcinnost vytapéni za teplejšich klimatických podminek cesonwar eseptiva do geno	Seasonal space heating energy efficiency under warmer climate conditions	jahreszeitbedingte Raumheizungs-Energieettizienz bei warmeren Klimaverhaltniss	ue saisonnière pour le chauffage des locaux, dans les conditions audes
Natistationen energiatehokkus lämpinissä ilmasto-olosuhteissa sezonni energetick ücinnost vytäpěni za teplejšich klimatických podmínek cesonhara eneprviha edekrivehocr npv oronnerve npv oronnerve npv no-ronnu krivmatriveh ycnoeva sezonova elektywność en Vater heating energie-efficiéntie voor watervervarming onder koudere klimaatomstandigheden Genergiefficienz bei kälteren Klimaverhältnissen I efficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus I efficienz energetica di recipie efficienz bei kälteren Klimaverhältnissen I efficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus I efficienz energetica di recipie efficienz bei kälteren Klimaverhältnissen I efficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus I efficienz energética do Vater heating energie efficiency under warmer climate conditions Energiefficktivitet vid vattenuppvärmning under kaltare klimatických podmínek energiefficktiviteten ved vandopvarmning under kaltare tenergética do i I efficienz energética do Vater heating energie efficiency under varmer klimato-olosuhteissa Genergiefficienz vody za teplejšich klimatických podmínek energiefficktiviteten ved vandopvarmning under varmere klimatorhold a eficiencia energética do Vater heating energie efficient vod vatervervarming onder warmere klimato-olosuhteissa Energiefficktivitet vid vattenuppvärmning under varmare klimatorhallanden energiefficktiviteten ved vandopvarmning under varmere klimatorhold a eficiencia energética	klir de	medelverkningsgrad för rumsuppvärmning under varmare klimatförhållan	ved rumopvarmning under varmere klimaforhold
Water heating energy efficiency under colder climate conditions die Warnwasserbereitungs-Energieeffizienz bei kälteren Klimaverhältnissen reficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus reficienz energetica di ré de energie-efficientle voor waterverwarning onder koudere klimaatomstandigheden Energieffektivitet vid vatteruppvärmning under kallare klimatforhållanden energiefektivitet vid vatteruppvärmning under kallare klimatforhållanden energiefektivitet vid vatteruppvärmning under kallare klimatforhållanden energiefektivitet vid varterververververververververververververve	tilalämmityksen kausittainen energiatehokkuus lämpimissä ilmasto-olosuhteissa	energetická účinnost vytápění za teplejších klim	енергийна ефективност при отопление при по-топли климатични усл
de energie-efficiêntie voor waterverwarming onder koudere klimaatomstandigheden Energieffektivitet vid vattenuppvärmning under kallare klimatforhållanden energiefektiviteten ved vandopvarmning under koldere klimatforhållanden energietica do s vedenlämmityksen energiatehokkuus kylmissä ilmasto-olosuhteissa energieffektivitet vid vattenuppvärmning under kallare klimatforhållanden energiefektiviteten ved vandopvarmning under koldere klimatforhållanden energiefektiviteten ved vandopvarmning under koldere klimatforhållanden energiefektiviteten ved vandopvarmning under kallare klimatforhållanden energiefektiviteten ved vandopvarmning under varmer klimatforhållanden feficacate inergietica do s de energie-efficientie voor waterverwarming onder warmere klimatofugheden Energiefektivitet vid vattenuppvärmning under varmare klimatforhållanden energiefektiviteten ved vandopvarmning under varmere klimatorhold a eficiencia energietica do s vedenlämmityksen energiatehokkuus lämpimissä ilmasto-olosuhteissa Energiefektivitet vid vattenuppvärmning under varmare klimatforhållanden energiefektiviteten ved vandopvarmning under varmere klimatorhold eefktywność eneregietica do s Soun	Water heating energy efficiency under colder climate conditions	ass	pour le chauffage de l'eau, dans les conditions clim
Verdenlämmityksen energiatehokkuus kylmissä ilmasto-olosuhteissa energieticki učinnost ohfevu vody za chladnějšich klimatických podminek energieticki vod vantovenou cover vantovenou covervantovane vantovenou cover vantovenou cover vantovenou cover v			teten ved vandonvarmning under koldere klimaforhold
Water heating energy efficiency under warmer climate conditions die Warmwasserbereitungs-Energieeffizienz bei wärmeren Klimaverhältnissen Pafficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus Pafficienza energetica di ris Vater heating energy efficiency under warmer climate conditions die Warmwasserbereitungs-Energieeffizienz bei wärmeren Klimaverhältnissen Pafficacité énergétique pour le chauffage de l'eau, dans les conditions climatiques plus Pafficienza energetica di ris de energie-efficientie voor waterverwarming onder warmere klimaato-olosubtiessa Energieffektivitet vid vartenuppvärmning under varmare klimatförhållanden energiefektiviteten ved vandopvarmning under varmere klimatorhold a eficiência energética do i vedenlämmit/ksen energiatehokkuus lämpimissä ilmasto-olosubteissa energetická účinnost ohřevu vody za teplejších klimatičkých podmínek energiefektiviteten ved vandopvarmning under varmere kapa npu no-ronnu knuwaruv+uv ycnoeux efektywność energetyczna Sound power level L _{WA} outdoor der Schallleistungspegel L _{WA} im Freien le niveau de puissance acoustique L _{WA} à l'extérieur il ivello di poterza sonora Net gluidsvermogensniveau L _{WA} bulten Ljudefektrivián L _{WA} i udomhus On rivel de poterica sonora On rivel de poterica sonora			енен уей уапооруантный иноет консете кы эфективност при подгряване на вода при
de energie-efficiêntie voor waterverwarming onder warmere klimaatomstandigheden Energiefiektivitet vid vattenuppvärmning under varmare klimaaförhållanden energiefiektiviteten ved vandopvarmning under varmere klimatorhöld vedenlämmityksen energiatehökkuus lämpimissa ilmasto-olosuhteissa energiefiekta üčinnost ohřev vody za teplejšich klimatických podmínek energiefiektiviteten ved vandopvarmning under varmere klimatorhöld Sound power level L _{WA} outdoor der Schallleistungspegel L _{WA} im Freien energienstiveau L _{WA} butlen ka textérieur Integluidsvernogenstriveau L _{WA} butlen L_WA butlen L_WA i l'extérieur	Water heating energy efficiency under warmer climate conditions	die Warmwasserbereitungs-Energieeffizienz bei wärmeren Klimaverhältnissen	chauffage de l'eau, dans le
vedenlämmityksen energiatehokkuus lämpimissä ilmasto-olosuhteissa energetická účinnost ohřevu vody za teplejšich klimatických podmínek енергийната ефективност при подгряване на вода при по-топли климатични условия Sound power level L _{WA} outdoor Sound power level L _{WA} outdoor Inet goludisvermogenstriveau L _{WA} bullen L_WA i l'extérieur Inet goludisvermogenstriveau L _{WA} bullen L_WA i l'extérieur	de eneraie-	opvärmn	
Image: Sound power level L _{WA} outdoor der Schallteistungspegel L _{WA} im Freien le niveau de puissance acoustique L _{WA} à l'extérieur Sound power level L _{WA} outdoor Ljudeffektnivân L _{WA} i utomhus lydeffektnivân L _{WA} i utomhus	vedenlämmi	vody za	ефективност при подгряване на вода при по-топли климатични
het geluidsvermogensniveau L _{WA} buiten L _{WA} i ude Ljudeffektnivån L _{WA} i utomhus			-
		ien	acoustique L WA à l'extérieur

	Fenañol
	EAAŋvıká
	unidad exterior Eξωτερική μονάδα
	unidad interior Ecrumpokh μονάδα
	- la aplicación de media temperatura In εφαριμογή σε μέση θεριμοκρασία
	- la aplicación de baja temperatura η εφαρμογή σε χαμηλή θερμοκρασία
	erfil de carga declara ηλωμένο προφίλ φορ
	clase de eficiencia energética esta
	la clase de eficiencia energética estacional de calefacción η πάξη ενεργειακής απόδοσης της εποχιακής θέρμανσης χώρου -
	la clase de eficiencia energética del caldeo de agua η τάξη εντεργειακής απόδοσης θέρμανσης νερού
	 a la policia calorífica nominal(en condiciones climáticas medias) n ονομαστική θεριμική ισχύς(υπό μέσες κλιματικές συνθήκες)
imatiche	- para calentar espacios, el consumo anual de energía(en condiciones climáticas medias)
limáticas mé	ια τη θέρμανση χώρου
ach klimatu	
natiche medie)	para calentar agua, el consumo anual de electricidad(en condiciones climáticas medias)
s climáticas m warunkach	για την θέρμανση νερού, η ετήσια κατανάλωση ηλεκτρικής ενέργειας(υπό μέσες κλιματικές συνθήκες) -
limatiche	la eficiencia energética estacional de calefacción(en condiciones climáticas medias)
náticas mé	η ενεργειακή απόδοση της εποχιακής θέρμανσης χώρου(υπό μέσες κλιματικές συνθήκες)
n klimatu edie)	ficiencia energética del caldeo de agua(en condiciones climáticas medias)
édias) owanego)	η ενεργειακή απόδοση θέρμανσης νερού(υπό μέσες κλιματικές συνθήκες) -
	el nivel de potencia acústica L _{WA} en interiores η στάθμη ηχητικής ισχύος L _{WA} εσωτερικού χώρου
	funcionar solamente durante las horas de baja demanda λεπουργία μόνο εκτός των ωρών αιχμής
	a per la polecia calorífica nominal en condiciones climáticas más frías η ονομαστική θερμική ισχύς υπό ψυχρότερες κλιματικές συνθήκες
	la potencia calorífica nominal en condiciones climáticas más cálidas η ονοματική θερμική ισχύς υπό θερμότερες κλιματικές συνθήκες
limatiche più	- para calentar espacios, el consumo anual de energía en condiciones climáticas más frías
limáticas mais	για θέρμανση χώρου, η ετήσια κατανάλωση ενέργειας υπό ψυχρότερες κλιματικές συνθήκες
다	
limatiche più limáticas mais	para calentar espacios, el consumo anual de energía en condiciones climáticas más cá lidas vird Brunovn vilnou i a trifora kortavidavon svérovnar umó Broutótener educturetér an vBriter
atu	
matiche più	para calentar agua, el consumo anual de electricidad en condiciones climáticas más frías
s climáticas	για θέρμανση νερού, η ετήσια κατανάλωση ηλεκτρικής ενέργειας υπό ψυχρότερες κλιματικέ ς συνθήκες
warunkach matiche più	 para calentar agua, el consumo anual de electricidad en condiciones climáticas más cá
s climáticas	indas για θέρμανση νερού, η ετήσια κατανάλωση ηλεκτρικής ενέργειας υπό θερμότερες κλιματικές ισινθήκες
warunkach	
auche piu	inergenca estacional de caletacción en condiciones climaticas mas in renéferences estacional de caletacción en condiciones climaticas mas in
naticas mais n klimatu chł	- KEC I skebkenkul anuooodi LIUS suuxianki eebhavauk Xmbon nuu hmXboisebsč kwihankes anvedi
limatiche più	eficiencia energética estacional de calefacción en condiciones climática
náticas mais n klimatu ciepł	η ενεργειακή απόδοση της εποχιακής θέρμανσης χώρου υπό θερμότερες κλιματικές συνθή κες -
ı fredde	la eficiencia energética de caldeo de agua en condiciones climáticas más frías
ais frias ego	
ı calde	eficiencia energética de caldeo de agua en condiciones climáticas má
is quentes lo	η ενεργειακή απόδοση της θέρμανσης νερού υπό θερμότερες κλιματικές συνθήκες -
	el nivel de potencia acústica L _{vin} , en exteriores η στάθμη ηχητικής ισχύος L _{vin} εξωτερικού χώρου

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	136	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor te	mperature Tj	
Tj = - 7 ° C	Pdh	10. 7	kW	Tj = - 7 ° C	COPd	2. 13	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 2 ° C	Pdh	6. 5	kW	Tj = + 2 ° C	COPd	3.36	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	5.0	kW	Tj = + 7 ° C	COPd	4. 75	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	3.8	kW	Tj = +12 ° C	COPd	6. 32	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	1. 78	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	1. 78	-
			-				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		· .	
Off mode	P _{OFF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L_{WA}	/ 58	dBA				
Annual energy consumption	Q_{HE}	7169	kWh				
For heat pump combination heater:				-			
Declared load profile		XL		Water heating energy efficiency	η wh	133	%
Daily electricity consumption	Qelec	6. 380	k₩h				
Annual electricity consumption	AEC	1404	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – Ma	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind th	e supplier∶ Kenichi SAITO			
百藤建一				Manager, Quality Assuarance Department			
				TURKEY			
Details and pressutions on installation maintance				installation and or approxim manuals			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0.9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	179	%
Declared capacity for heating for par	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor tempera	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	10. 7	kW	Tj = − 7 ° C	COPd	2. 85	-
Degradation co-efficient (**)	Cdh	1.00	_			L1	
Tj = + 2 ° C	Pdh	6.5	kW	Tj = + 2 ° C	COPd	4. 53	-
Degradation co-efficient (**)	Cdh	0.99	_			L1	
Tj = + 7 ° C	Pdh	5. 2	kW	Tj = + 7 ° C	COPd	6. 04	-
Degradation co-efficient (**)	Cdh	0. 98	-			,ı	
Tj = +12 ° C	Pdh	4.0	kW	Tj = +12 ° C	COPd	7. 02	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	2. 43	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	2. 43	-
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	Q_{HE}	5481	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	133	%
Daily electricity consumption	Qelec	6. 380	kWh				
Annual electricity consumption	AEC	1404	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	lanisa, Turkey
The identification and signature of the	ne person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / medi	um-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
Details and precautions on installation, maintena Details and precautions on recycling and/or dis		,		installation and or operation manuals.			

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	117	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	7.3	kW	Tj = - 7 ° C	COPd	2. 70	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	3.8	kW	Tj = + 7 ° C	COPd	4. 78	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	4.4	kW	Tj = +12 ° C	COPd	7.00	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	10. 2	kW	Tj = bivalent temperature	COPd	1. 55	-
Tj = operation limit temperature (***)	Pdh	8. 2	kW	Tj = operation limit temperature (***)	COPd	1. 54	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	9. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 55	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	3. 9	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	9902	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	111	%
Daily electricity consumption	Qelec	7. 500	kWh				
Annual electricity consumption	AEC		kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate ∕ mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
	,			TURKEY			
· Details and precautions on installation, maintena	nce and asse	embly can be	found in the	installation and or operation manuals.			
\cdot Details and precautions on recycling and/or dis	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	ηs	149	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ten	perature Tj	
Tj = - 7 ° C	Pdh	7.3	kW	Tj = - 7 ° C	COPd	3. 67	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 2 ° C	Pdh	4. 5	kW	Tj = + 2 ° C	COPd	4. 30	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 7 ° C	Pdh	3. 9	kW	Tj = + 7 ° C	COPd	5. 38	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	4. 6	kW	Tj = +12 ° C	COPd	8. 02	-
Degradation co-efficient (**)	Cdh	0. 97	-				
Tj = bivalent temperature	Pdh	10. 2	kW	Tj = bivalent temperature	COPd	2. 08	-
Tj = operation limit temperature (***)	Pdh	8. 7	kW	Tj = operation limit temperature (***)	COPd	1.56	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	9. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2.04	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	3. 4	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L_{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	7843	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	111	%
Daily electricity consumption	Qelec	7. 500	kWh				
Annual electricity consumption	AEC	0	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the				
The signature is signed in the everage sli	mata / madiu	m_tomporatu	ra anation	Kenichi SAITO Manager, Quality Assuarance Department			
The signature is signed in the average clin	mate / medit	um - Lemperatu		TURKEY			
· Details and precautions on installation, maintena	ince and ass	mbly can be					

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	ηs	161	%
Declared capacity for heating for part	: load at	indoor	•	Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor ter	nperature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	12. 1	kW	Tj = + 2 ° C	COPd	2. 05	-
Degradation co-efficient (**)	Cdh	1.00	_				
Tj = + 7 ° C	Pdh	7.7	kW	Tj = + 7 ° C	COPd	3. 42	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = +12 ° C	Pdh	5. 2	kW	Tj = +12 ° C	COPd	5.65	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	2. 05	-
			-				
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de	•	Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0. 000	kW				
Other items							
Capacity control		variable	-	Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	3952	kWh				
For heat pump combination heater:							
Declared load profile		XL	-	Water heating energy efficiency	η wh	155	%
Daily electricity consumption	Qelec	5.600	kWh				
Annual electricity consumption	AEC		kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average clin	mate / mediu	um-temperatu	ure section.	Manager, Quality Assuarance Department			

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s) :	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	232	%
Declared capacity for heating for part	load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	12. 1	kW	Tj = + 2 ° C	COPd	3. 30	-
Degradation co-efficient (**)	Cdh	1.00	_				
Tj = + 7 ° C	Pdh	7.7	kW	Tj = + 7 ° C	COPd	5. 32	-
Degradation co-efficient (**)	Cdh	0.99	_				
Tj = +12 ° C	Pdh	4.4	kW	Tj = +12 ° C	COPd	7.46	-
Degradation co-efficient (**)	Cdh	0. 98	_			I	
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	3. 30	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	3. 30	-
			J				
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de	1	Supplementary heater		II	
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW			•	
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items			•	•			
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	Q_{HE}	2753	kWh				
For heat pump combination heater:				•			
Declared load profile		XL		Water heating energy efficiency	η wh	155	%
Daily electricity consumption	Qelec	5.600	kWh			I	
Annual electricity consumption	AEC	0	kWh				
Contact details			1 1	•			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MAD	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	e person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average clim	nate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	ERST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	138	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor te	mperature Tj	
Tj = - 7 ° C	Pdh	10. 7	kW	Tj = - 7 ° C	COPd	2. 13	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 2 ° C	Pdh	6.5	kW	Tj = + 2 ° C	COPd	3.36	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	5.0	kW	Tj = + 7 ° C	COPd	4. 75	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	3. 8	kW	Tj = +12 ° C	COPd	6. 32	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	1. 78	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	1. 78	-
			-				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		·	
Off mode	P _{OFF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L_{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	7114	k₩h				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	133	%
Daily electricity consumption	Qelec	6. 380	k₩h				
Annual electricity consumption	AEC	1404	k₩h				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - Ma	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind th	e supplier∶ Kenichi SAITO			
百藤建一				Manager, Quality Assuarance Department			
				TURKEY			
Details and pressutions on installation maintene			farmed in the	installation and or energian manuals			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0.9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	ERST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	181	%
Declared capacity for heating for par	t load at	indoor		Declared coefficient of performance or prin	mary energy	ratio for	
temperature 20 °C and outdoor tempera	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ten	nperature Tj	
Tj = - 7 ° C	Pdh	10. 7	kW	Tj = − 7 ° C	COPd	2. 85	-
Degradation co-efficient (**)	Cdh	1.00	_				
Tj = + 2 ° C	Pdh	6.5	kW	Tj = + 2 ° C	COPd	4. 53	-
Degradation co-efficient (**)	Cdh	0.99	_				
Tj = + 7 ° C	Pdh	5. 2	kW	Tj = + 7 ° C	COPd	6.04	-
Degradation co-efficient (**)	Cdh	0. 98	_			11	
Tj = +12 ° C	Pdh	4.0	kW	Tj = +12 ° C	COPd	7. 02	-
Degradation co-efficient (**)	Cdh	0.97	_				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	2. 43	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	2. 43	-
			4				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de	I	Supplementary heater		11	
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	Q_{HE}	5426	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	133	%
Daily electricity consumption	Qelec	6. 380	k₩h				
Annual electricity consumption	AEC	1404	kWh				
Contact details		•	••	•			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS M	ANUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - M	lanisa, Turkey
The identification and signature of t	he person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / medi	um-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
The signature is signed in the average cli	ance and ass	embly can be	e found in the	TURKEY installation and or operation manuals.			

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	ERST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

i 12. at indoo 7. 0.9 4. 0.9 3. 0.9	r 3 kW 9 – 4 kW 9 –	Seasonal space heating energy efficiency Declared coefficient of performance or prin part load at indoor temperature 20 ° C and Tj = -7 ° C Tj = +2 ° C	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nperature Tj 2.70	-
7 0. 9 4 0. 9 3	3 kW 19 – 4 kW 19 –	part load at indoor temperature 20 $^\circ$ C and Tj = $-$ 7 $^\circ$ C	outdoor ter COPd	nperature Tj 2.70	_
7. 0. 9 4. 4 0. 9 3. 4	9 – 4 kW 9 –	Tj = - 7 ° C	COPd	2. 70	-
0.9 4. 0.9 3.	9 – 4 kW 9 –				-
4 0. 9 3	4 kW 19 –	Tj = + 2 ° C	COPd	2.50	
0.9 3.	9 –	Tj = + 2 ° C	COPd	2 50	
3.				3.50	-
	0 1.W				
0.9	8 kW	Tj = + 7 ° C	COPd	4. 78	-
	- 8				
4.	4 kW	Tj = +12 ° C	COPd	7.00	-
0.9	- 8				
10	. 2 kW	Tj = bivalent temperature	COPd	1.55	-
8.	2 kW	Tj = operation limit temperature (***)	COPd	1. 54	-
9.	9 kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1.55	-
-1	6°C	Operation limit temperature	TOL	-30	°C
1h -2	2 ° C	Heating water operating limit temperature	WTOL	60	°C
mode		Supplementary heater			
0.0	15 kW	Rated heat output (*)	Psup	3.9	kW
0.0	15 kW				
0.0	15 kW	Type of energy input		Electrical	
0.0	00 kW				
vari	able	Rated air flow rate, outdoors	-	2640	m³/h
/	58 dBA				
986	i9 kWh				
Х	L	Water heating energy efficiency	η wh	111	%
7.5	00 kWh				
	kWh				
IG TURKEY J	DINT STOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
n empowe	red to bind th				
dium-temr	erature section				
arum tolli		TURKEY			
assembly o	an be found in the				
	10 8. 9. -11 mode 0.0 <t< td=""><td>8.2 kW 9.9 kW 9.9 kW -16 ° C mode ° C 0.015 kW 0.015 kW 0.015 kW 0.015 kW 0.015 kW 0.000 kW variable / 58 / 58 dBA 9869 kWh XL </td><td>10.2 kW 8.2 kW 9.9 kW 9.9 kW -16 ° C nh -22 ° C mode Supplementary heater 0.015 kW Variable Rated air flow rate, outdoors XL Variable XL Water heating energy efficiency XL KWh NG TURKEY JOINT STOCK COMPANY Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor on empowered to bind the supplier: Kenichi SAITO kedium-temperature section. Manager, Quality Assuarance Department</td><td>10.2 kW Tj = bivalent temperature COPd 8.2 kW Tj = operation limit temperature (***) COPd 9.9 kW Tj = -15 ° C (if TOL < -20 ° C)</td> COPd 0.16 ° C Operation limit temperature TOL mode Supplementary heater NTOL Heating water operating limit wTOL 0.015 kW Rated heat output (*) Psup 0.015 kW Type of energy input Image: Comparison of the supplementary heater variable Rated air flow rate, outdoors - / 58 dBA Water heating energy efficiency η wh xL KWh Water heating energy efficiency η wh NG TURKEY JOINT STOCK COMPANY Manisa OSB 4. Kisim Kecilikoyosb Mah. Ahmet Nazif Zorlu Bulvari No: Kenichi SAITO edium-temperature section. Manager, Quality Assuarance Department TURKEY TURKEY assembly can be found in the installation and or operation manuals.</t<>	8.2 kW 9.9 kW 9.9 kW -16 ° C mode ° C 0.015 kW 0.015 kW 0.015 kW 0.015 kW 0.015 kW 0.000 kW variable / 58 / 58 dBA 9869 kWh XL	10.2 kW 8.2 kW 9.9 kW 9.9 kW -16 ° C nh -22 ° C mode Supplementary heater 0.015 kW Variable Rated air flow rate, outdoors XL Variable XL Water heating energy efficiency XL KWh NG TURKEY JOINT STOCK COMPANY Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor on empowered to bind the supplier: Kenichi SAITO kedium-temperature section. Manager, Quality Assuarance Department	10.2 kW Tj = bivalent temperature COPd 8.2 kW Tj = operation limit temperature (***) COPd 9.9 kW Tj = -15 ° C (if TOL < -20 ° C)	10.2 kW Tj = bivalent temperature COPd 1.55 8.2 kW Tj = operation limit temperature (****) COPd 1.54 9.9 kW Tj = -15 ° C (if TOL < -20 ° C)

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	ERST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	ηs	150	%
Declared capacity for heating for part	: load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ure Tj			part load at indoor temperature 20 $^\circ$ C and	outdoor ten	nperature Tj	
Tj = - 7 ° C	Pdh	7.3	kW	Tj = - 7 ° C	COPd	3. 67	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.5	kW	Tj = +2 ° C	COPd	4. 30	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	3.9	kW	Tj = + 7 ° C	COPd	5. 38	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	4.6	kW	Tj = +12 ° C	COPd	8. 02	-
Degradation co-efficient (**)	Cdh	0.97	-				
Tj = bivalent temperature	Pdh	10. 2	kW	Tj = bivalent temperature	COPd	2. 08	-
Tj = operation limit temperature (***)	Pdh	8. 7	kW	Tj = operation limit temperature (***)	COPd	1.56	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	9. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2. 04	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	3. 4	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	7810	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	111	%
Daily electricity consumption	Qelec	7.500	kWh				
Annual electricity consumption	AEC	0	k₩h				
Contact details				·			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the				
The signature is signed in the evenes ali	mata / madiu		ve eestion	Kenichi SAITO Manager, Quality Assuarance Department			
The signature is signed in the average clin	mare / medit	un-remberatu		TURKEY			
· Details and precautions on installation, maintena	nce and asso	embly can be	found in the				
· Details and precautions on recycling and/or dis							

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	ERST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

	Value	Unit	Item	Symbol	Value	Unit
Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	163	%
load at	indoor		Declared coefficient of performance or prim	ary energy	ratio for	
ure T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Cdh	-	-				
Pdh	12. 1	kW	Tj = + 2 ° C	COPd	2. 05	-
Cdh	1.00	-				
Pdh	7.7	kW	Tj = + 7 ° C	COPd	3. 42	-
Cdh	0. 99	-				
Pdh	5. 2	kW	Tj = +12 ° C	COPd	5.65	-
Cdh	0. 98	-				
Pdh	12. 1	kW	Tj = bivalent temperature	COPd	2. 05	-
Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	2. 05	-
		-				
Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Tdesignh	2	°C	Heating water operating limit temperature	WTOL	60	°C
active mo	de		Supplementary heater			
P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0. 015	kW				
P_{SB}	0. 015	kW	Type of energy input		Electrical	
Рск	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2640	m³/h
L_{WA}	/ 58	dBA				
Q _{HE}	3886	kWh				
	XL		Water heating energy efficiency	η wh	155	%
Qelec	5.600	kWh				
AEC		kWh				
				u Bulvari No∷	9 Yunusemre – M	anisa, Turkey
e person	empowered	to bind the				
ate / mediu	ım-temperatu	re section.	Manager, Quality Assuarance Department TURKEY			
	load at ure T j Pdh Cdh PoFF PoF CK Cdh PoF PoF CK CH CH PoF CK CH CH CH PoF CK CH CH PoF CK CH CH CH CH CH CH CH CH CH CH	load at indoor ure T j Pdh - Cdh - Pdh 12.1 Cdh 1.00 Pdh 12.1 Cdh 0.99 Pdh 5.2 Cdh 0.99 Pdh 12.1 Cdh 0.98 Pdh 12.1 Pdh 12.1 Tbiv 2 Tdesignh 2 active mode P PoFF 0.015 PSB 0.015 PGK 0.000 variable L XL Qelec 5.600 AEC VUFACTURING TURKEY JOINT S	load at indoor ure T j Pdh - Pdh - Pdh 12.1 RW Cdh Pdh 12.1 RW Cdh Pdh 7.7 RW Cdh O.99 - Pdh 5.2 RW Cdh O.98 - Pdh 12.1 RW Variable Variable ° C active mode ° C PorF 0.015 RW 0.015 RW 0.015 Pab 3886 KW Porck 0.000 KL Qelec 5.600 KWh	Prated 12.1 KW load at indoor energy efficiency ure T j	PrateI.2.1KWenergyefficiencyTIoad at indoorIoad at indoorIoad at indoorIoad at indoorPdhPdhPdhPdh12.1KWTj = -7 ° CCOPdCdh0.0Pdh7.7KWTj = +7 ° CCOPdCdh0.99Pdh5.2KWTj = +12 ° CCOPdCdh0.98Pdh12.1KWTj = bivalent temperatureCOPdCdh0.98Pdh12.1KWTj = operation limit temperatureCOPdCdh0.98Pdh12.1KWTj = operation limit temperatureCOPdTbiv2° COperation limit temperatureTOLHeating water operating limitWTOLSupplementary heaterPupPorf0.015KWType of energy input-Pas0.015KWRated air flow rate, outdoors-VariableKWhKWhVLXLWater heating energy efficiency7 whQelec5.600KWhKWhAECKWhKWhKenchi SAITOWEFACTURING TURKEY JOINT STOCK COMPANYMenisa 638 4 Kisin Kecilikoyob Mah. Amet Marif Zorlu Bulvari No:wate / medium-temperature section.Kanager, Quality Assuarance	Prate 12.1 KW energy officiency 7/8 103 Ioad at indoor Declared coefficient of performance or primary energy ratio for yre T j Pdh - KW Declared coefficient of performance or primary energy ratio for Pdh - KW Tj = -7 ° C COPd - Pdh - KW Tj = -7 ° C COPd - Pdh 12.1 KW Tj = + 7 ° C COPd 2.05 Cdh 0.09 - Tj = + 7 ° C COPd 2.05 Cdh 0.99 - Tj = + 12 ° C COPd 2.05 Cdh 0.98 - Tj = bivalent temperature COPd 2.05 Cdh 0.98 - Tj = bivalent temperature COPd 2.05 Tbiv 2 ° C Operation limit temperature TOL -30 Heating water operating limit WTOL 60 2.05 2.05 Supplementary heater Rated heat output (*) Psup 0.0 0 Par 0.015 KW Type of energy input Electr

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	ERST30D-****D
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		yes
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

Rated heat output (*) Declared capacity for heating for part temperature 20 ° C and outdoor temperatur Tj = -7 ° C Degradation co-efficient (**) Tj = + 2 ° C Degradation co-efficient (**) Tj = + 7 ° C		12.1 indoor	kW	Seasonal space heating energy efficiency Declared coefficient of performance or prim	η s	238	%
<pre>temperature 20 ° C and outdoor temperatur Tj = - 7 ° C Degradation co-efficient (**) Tj = + 2 ° C Degradation co-efficient (**) Tj = + 7 ° C</pre>	ure Tj	indoor		Declared coefficient of performance or prim			
Tj = - 7 ° C Degradation co-efficient (**) Tj = + 2 ° C Degradation co-efficient (**) Tj = + 7 ° C	5			been and been noncert of performance of prim	nary energy	ratio for	
Degradation co-efficient (**) Tj = + 2 ° C Degradation co-efficient (**) Tj = + 7 ° C	Pdh			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = + 2 ° C Degradation co-efficient (**) Tj = + 7 ° C		-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**) Tj = + 7 ° C	Cdh	-	-				
Tj = + 7 ° C	Pdh	12. 1	kW	Tj = + 2 ° C	COPd	3. 30	-
5	Cdh	1.00	-				
	Pdh	7.7	kW	Tj = + 7 ° C	COPd	5. 32	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	4.4	kW	Tj = +12 ° C	COPd	7.46	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	3. 30	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	3. 30	-
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0.015	kW				
Standby mode	P_{SB}	0.015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	Q_{HE}	2687	k₩h				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	155	%
Daily electricity consumption	Qelec	5.600	k₩h				
Annual electricity consumption	AEC	0	k₩h				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MAN				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	u Bulvari No∷	19 Yunusemre – Ma	anisa, Turkey
The identification and signature of the	e person	empowered	to bind the	supplier; Kenichi SAITO			
The signature is signed in the average clim	nate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
Details and precautions on installation, maintenar	nce and asse	embly can be	found in the				

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	136	%
Declared capacity for heating for part	t load at	indoor	1	Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 °C and outdoor temperat	ture T j			part load at indoor temperature 20 °C and	outdoor te	mperature Tj	
Tj = - 7 ° C	Pdh	10. 7	kW	Tj = - 7 ° C	COPd	2. 13	-
Degradation co-efficient (**)	Cdh	1.00	-			. <u></u>	
Tj = + 2 ° C	Pdh	6.5	kW	Tj = + 2 ° C	COPd	3.36	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	5.0	kW	Tj = + 7 ° C	COPd	4. 75	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = +12 ° C	Pdh	3.8	kW	Tj = +12 ° C	COPd	6. 32	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	1. 78	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	1. 78	-
			_				
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdesignh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P_{OFF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	Q_{HE}	7169	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	133	%
Daily electricity consumption	Qelec	6. 380	kWh				
Annual electricity consumption	AEC	1404	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of the	he person	empowered	to bind th	e supplier: Kenichi SAITO			
育藤健-				Manager, Quality Assuarance Department			
M MULE DE -				TURKEY			

· Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals.

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		average climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	ηs	179	%
Declared capacity for heating for par	t load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 °C and outdoor tempera	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	nperature Tj	
Tj = - 7 ° C	Pdh	10. 7	kW	Tj = - 7 ° C	COPd	2.85	-
Degradation co-efficient (**)	Cdh	1.00	_				
Tj = + 2 ° C	Pdh	6.5	kW	Tj = + 2 ° C	COPd	4. 53	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	5. 2	kW	Tj = + 7 ° C	COPd	6.04	-
Degradation co-efficient (**)	Cdh	0. 98	-			<u></u>	
Tj = +12 ° C	Pdh	4.0	kW	Tj = +12 ° C	COPd	7. 02	-
Degradation co-efficient (**)	Cdh	0. 97	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	2. 43	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	2. 43	-
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-10	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	Q _{HE}	5481	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	133	%
Daily electricity consumption	Qelec	6. 380	kWh				
Annual electricity consumption	AEC	1404	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of the	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA The identification and signature of th	ne person mate / mediu ance and ass	empowered um-temperatu embly can be	to bind the resection.	e supplier; Kenichi SAITO Manager, Quality Assuarance Department TURKEY installation and or operation manuals.	lu Bulvari No:	19 Yunusemre - M	anisa,

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	η s	117	%
Declared capacity for heating for part	load at	indoor		Declared coefficient of performance or prin	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor tem	perature Tj	
Tj = - 7 ° C	Pdh	7.3	kW	Tj = - 7 ° C	COPd	2. 70	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 2 ° C	Pdh	4.4	kW	Tj = + 2 ° C	COPd	3. 50	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = + 7 ° C	Pdh	3.8	kW	Tj = + 7 ° C	COPd	4. 78	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	4.4	kW	Tj = +12 ° C	COPd	7.00	-
Degradation co-efficient (**)	Cdh	0. 98	-			<u>_</u>	
Tj = bivalent temperature	Pdh	10. 2	kW	Tj = bivalent temperature	COPd	1. 55	-
Tj = operation limit temperature (***)	Pdh	8. 2	kW	Tj = operation limit temperature (***)	COPd	1. 54	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	9. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	1. 55	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0.015	kW	Rated heat output (*)	Psup	3.9	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	9902	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	111	%
Daily electricity consumption	Qelec	7.500	k₩h				
Annual electricity consumption	AEC		kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No∷	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
	,edit			TURKEY			
· Details and precautions on installation, maintena	ince and asse	embly can be	found in the	installation and or operation manuals.			
· Details and precautions on recycling and/or disp	posal at end-	of-life can be	found in the	installation and or operation manuals.			

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model (s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		colder climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	ηs	149	%
Declared capacity for heating for part	t load at	indoor		Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperat	ture T j			part load at indoor temperature 20 $^\circ$ C and	outdoor ten	perature Tj	
Tj = - 7 ° C	Pdh	7.3	kW	Tj = - 7 ° C	COPd	3. 67	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 2 ° C	Pdh	4. 5	kW	Tj = + 2 ° C	COPd	4. 30	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = + 7 ° C	Pdh	3. 9	kW	Tj = + 7 ° C	COPd	5. 38	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = +12 ° C	Pdh	4. 6	kW	Tj = +12 ° C	COPd	8. 02	-
Degradation co-efficient (**)	Cdh	0. 97	-				
Tj = bivalent temperature	Pdh	10. 2	kW	Tj = bivalent temperature	COPd	2. 08	-
Tj = operation limit temperature (***)	Pdh	8. 7	kW	Tj = operation limit temperature (***)	COPd	1.56	-
Tj = - 15 ° C (if TOL < - 20 ° C)	Pdh	9. 9	kW	Tj = - 15 ° C (if TOL < - 20 ° C)	COPd	2.04	-
Bivalent temperature	Tbiv	-16	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	-22	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater			
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	3. 4	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P _{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	P _{CK}	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	7843	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	111	%
Daily electricity consumption	Qelec	7. 500	kWh				
Annual electricity consumption	AEC	0	kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA	NUFACTURING T	URKEY JOINT S	TOCK COMPANY	Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre – M	anisa, Turkey
The identification and signature of th	ne person	empowered	to bind the				
The signature is signed in the everage sli	mata / madiu	m_tomporatu	ra anation	Kenichi SAITO Manager, Quality Assuarance Department			
The signature is signed in the average clin	mate / medit	um - Lemperatu		TURKEY			
· Details and precautions on installation, maintena	ince and ass	mbly can be					

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		medium-temperature application.
Parameters for		warmer climate conditions.

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated heat output (*)	Prated	12. 1	kW	Seasonal space heating energy efficiency	ηs	161	%
Declared capacity for heating for part	: load at	indoor	•	Declared coefficient of performance or prim	nary energy	ratio for	
temperature 20 $^\circ$ C and outdoor temperature T j			part load at indoor temperature 20 $^\circ$ C and outdoor temperature Tj				
Tj = - 7 ° C	Pdh	-	kW	Tj = - 7 ° C	COPd	-	-
Degradation co-efficient (**)	Cdh	-	-				
Tj = + 2 ° C	Pdh	12. 1	kW	Tj = + 2 ° C	COPd	2.05	-
Degradation co-efficient (**)	Cdh	1.00	-				
Tj = + 7 ° C	Pdh	7.7	kW	Tj = + 7 ° C	COPd	3. 42	-
Degradation co-efficient (**)	Cdh	0. 99	-				
Tj = +12 ° C	Pdh	5. 2	kW	Tj = +12 ° C	COPd	5.65	-
Degradation co-efficient (**)	Cdh	0. 98	-				
Tj = bivalent temperature	Pdh	12. 1	kW	Tj = bivalent temperature	COPd	2.05	-
Tj = operation limit temperature (***)	Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	2. 05	-
Bivalent temperature	Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
Reference design conditions for space heating	Tdes i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other than	active mo	de		Supplementary heater		1 1	
Off mode	P _{0FF}	0. 015	kW	Rated heat output (*)	Psup	0.0	kW
Thermostat-off mode	P _{T0}	0. 015	kW				
Standby mode	P_{SB}	0. 015	kW	Type of energy input		Electrical	
Crankcase heater mode	Рск	0.000	kW				
Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	2640	m³/h
Sound power level, indoors/outdoors	L _{WA}	/ 58	dBA				
Annual energy consumption	\mathbf{Q}_{HE}	3952	kWh				
For heat pump combination heater:							
Declared load profile		XL		Water heating energy efficiency	η wh	155	%
Daily electricity consumption	Qelec	5.600	kWh				
Annual electricity consumption	AEC		kWh				
Contact details							
MITSUBISHI ELECTRIC AIR CONDITIONING SYSTEMS MA				Manisa OSB 4.Kisim Kecilikoyosb Mah. Ahmet Nazif Zor	lu Bulvari No:	19 Yunusemre - M	anisa, Turkey
The identification and signature of th	ie person	empowered	to bind the	e supplier; Kenichi SAITO			
The signature is signed in the average cli	mate / mediu	um-temperatu	re section.	Manager, Quality Assuarance Department			
Details and precautions on installation, maintena Details and precautions on recycling and/or dis				installation and or operation manuals.			

 \cdot Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.

Model(s):	Outdoor unit:	PUZ-SHWM120VAA
	Indoor unit:	EHST30D-MED
Air-to-water heat pump:		yes
Water-to-water heat pump:		no
Brine-to-water heat pump:		no
Low-temperature heat pump:		no
Equipped with a supplementary heater:		no
Heat pump combination heater:		yes
Parameters for		low-temperature application.
Parameters for		warmer climate conditions.

pad at Tj Pdh Cdh		kW	Seasonal space heating energy efficiency Declared coefficient of performance or prim	ηs	232	%
T j Pdh			Declared coefficient of performance or prim	ory operay		
Pdh				lary energy	ratio for	
			part load at indoor temperature 20 $^\circ$ C and outdoor temperature Tj			
Cdh	-	kW	Tj = - 7 ° C	COPd	-	-
oun	-	-				
Pdh	12. 1	kW	Tj = + 2 ° C	COPd	3. 30	-
Cdh	1.00	-				
Pdh	7.7	kW	Tj = + 7 ° C	COPd	5. 32	-
Cdh	0. 99	-				
Pdh	4.4	kW	Tj = +12 ° C	COPd	7.46	-
Cdh	0. 98	-				
Pdh	12. 1	kW	Tj = bivalent temperature	COPd	3. 30	-
Pdh	12. 1	kW	Tj = operation limit temperature (***)	COPd	3. 30	-
Tbiv	2	°C	Operation limit temperature	TOL	-30	°C
es i gnh	2	°C	Heating water operating limit temperature	WTOL	60	°C
tive mo	de		Supplementary heater			
P _{0FF}	0.015	kW	Rated heat output (*)	Psup	0.0	kW
P _{T0}	0. 015	kW				
P_{SB}	0. 015	kW	Type of energy input		Electrical	
P _{CK}	0.000	kW				
	variable		Rated air flow rate, outdoors	-	2640	m³/h
L_{WA}	/ 58	dBA				
\mathbf{Q}_{HE}	2753	kWh				
		·	-			
	XL		Water heating energy efficiency	η wh	155	%
Pelec	5.600	kWh				
AEC	0	kWh				
				u Bulvari No:1	19 Yunusemre – Ma	anisa, Turkey
person	empowered t	to bind the				
/ mediu	ım-temperatu	re section.	Manager, Quality Assuarance Department			
			TURKEY			
	Pdh Cdh Pdh Cdh Pdh Tbiv esignh :ive mo PorF PTO PSB PCK PTO PSB PCK LWA QHE LWA QHE Elec AEC : CTURING T erson / mediu	Pdh 7.7 Cdh 0.99 Pdh 4.4 Cdh 0.98 Pdh 12.1 Pdh 12.1 Pdh 12.1 Tbiv 2 esignh 2 :ive mode PoFF 0.015 Pro 0.015 PcK 0.000 variable L LMA / 58 QHE 2753 XL Image: Second and assembly can be	Pdh 7.7 kW Cdh 0.99 - Pdh 4.4 kW Cdh 0.98 - Pdh 12.1 kW Pdh 12.1 kW Pdh 12.1 kW Pdh 2 ° C esignh 2 ° C cive <mode< td=""> - - PoFF 0.015 kW Ps8 0.015 kW PcK 0.000 kW Variable - LwA / 58 dBA QHE 2753 kWh STURING TURKEY JOINT STOCK COMPANY - rerson empowered to cruster of the bind the / medium-temperature section. - and assembly can be found in the -</mode<>	Pdh7.7KWCdh0.99-Pdh4.4KWCdh0.98-Pdh12.1KWPdh12.1KWTbiv2° Cesignh2° Ccive mode· cPorF0.015KWPorg0.015KWPorg0.015KWPorg0.015KWPorg0.000kWVariableRated air flow rate, outdoorsVariableVariableLux/ 58dBA AcC0XLWater heating energy efficiencyVURING TURKEY JOINT STOCK COMPANYManisa OSB 4. Kisim Kecilikoyosh Mah. Ahmet Nazif Zorl rerson empowered to bind the supplier: Kenichi SAITO/ medium-temperature section.Manager, Quality Assuarance Department	Pdh7.7kWTj = +7 ° CCOPdCdh0.99Pdh4.4KWTj = +12 ° CCOPdCdh0.98Pdh12.1KWTj = bivalent temperatureCOPdPdh12.1kWTj = operation limit temperature (***)COPdPdh2° COperation limit temperature (****)COPdBasignh2° COperation limit temperatureTOLHeating water operating limitWTOLSupplementary heaterPsupPorr0.015kWRated heat output (*)PsupPro0.015kWType of energy input-VariableRated air flow rate, outdoors-LwA/ 58dBAAgeQue2753kWhMarisa 0SB 4.Kisim Kecilikoyoeb Mah. Atmet Nazif Zorlu Bulvari Ne:VURING TURKEY JOINT STOCK COMPANYManisa 0SB 4.Kisim Kecilikoyoeb Mah. Atmet Nazif Zorlu Bulvari Ne:rerson empowered to bind the supplier: Kenichi SAITOKecilikoyoeb Mah. Atmet Nazif Zorlu Bulvari Ne:rureterson empowered to bind the supplier: TURKEYManisa OSB 4.Kisim Kecilikoyoeb Department TURKEYmediam-temperature section.Manager, Quality Assuarance Department TURKEYMater Same Same Same Same Same Same Same Same	Pdh7.7KWTj = + 7 ° CCOPd5.32Cdh 0.99 Tj = + 12 ° CCOPd $\overline{5.32}$ Pdh 4.4 KWTj = + 12 ° CCOPd $\overline{7.46}$ Cdh 0.98 Tj = bivalent temperatureCOPd $\overline{3.30}$ Pdh 12.1 KWTj = operation limit temperatureCOPd $\overline{3.30}$ Tbiv 2 ° COperation limit temperatureTOL -30 esignh 2 ° CHeating water operating limitWTOL 60 Supplementary heaterSupplementary heaterPsup 0.0 9 Por 0.015 KWRated heat output (*)Psup 0.0 Pos 0.000 KWType of energy inputElectricalVariableRated air flow rate, outdoors- 2640 LwA $/ 58$ dBA -2640 VLWater heating energy efficiency 7 wh 155 ElectricalKWhKWh -2640 XLWater heating energy efficiency 7 wh 155 Electrical terson empowered to bind the supplier: Kenichi SAITOKenichi SAITO/ medium-temperature section.Manager, Quality Assuarance Department TURKEYTURKEYand assembly can be found in the installation and or operation manuals. $-$

· Details and precautions on recycling and/or disposal at end-of-life can be found in the installation and or operation manuals.

(*) For heat pump space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating

Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0,9.

(***) If the declared TOL is lower than the T designh of the considered climate then the outdoor dry bulb temperature Tj is equal to T designh.