PRODUCT INFORMATION
PURY-P***YNW-A1/TR(-BS)
PURY-EP***YNW-A1/TR(-BS)
For Europe Regulation

					11 01111111011(1)				
Model(s): Information to						T 4			
Outdoor: PURY					Indoor: PEFY-P50VMA3-	E×4 units			
Outdoor heat exchanger of Indoor heat exchanger of the control of				_					
Type: compressor driver				_					
if applicable: driver of c				_					
Item	Symbol	Value		_	Item S	Symbol		Value	Unit
		T		ı					1
Rated cooling capacity	$P_{\text{rated,c}}$	22.40	kW		Seasonal space cooling energy efficiency	$ eal_{ m s,c}$		296.0	%
Declared cooling capa outdoor temperatures T _j bulb)	•	-	-		Declared energy efficient auxiliary energy factor temperatures T _i	•	-		•
$T_i = +35 ^{\circ}\text{C}$	Pdc	22.40	kW		ľ	EER _d		4.25	%
$T_i = +30 ^{\circ}\text{C}$	Pdc	16.51	kW		3	EER _d		5.10	
$T_i = +25 ^{\circ}C$	Pdc	10.61	kW			EER_d		9.81	
$T_i = +20 ^{\circ}\text{C}$	Pdc	10.16	kW		3	EER_d		14.67	
-, -, -			-	ĺ	-, -, -	u			┤~~
Degradation co- efficient air conditioners**	· C _d	0.25	-						
Power consumption in n	nodes othe	er than 'ac	etive mode'	İ					-
	nodes ouic	ı man ac	-	ĺ					
Off mode	P_{OFF}	0.048	kW		Crankcase heater mode	P_{CK}		0.018	kW
Thermostat-off mode	P_{TO}	0.018	kW		Standby mode	P_{SB}		0.048	kW
Other items				İ					
Capacity control	variable				For air-to-air ai conditioner: Nominal ai flow rate, outdoo measured	r	10200	m	³/h
Sound power level, outdoor	L _{WA}	76	dB	L					
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
					RPORATION				
Contact details					RIGERATION SYSTEMS	WORKS			
** ICC : 1	15-66, Tebi	ira 6 Cho	me, Wakaya	m	a-City 640-8686,Japan		1	-11 1. ^	25
Γ^{**} If C_d is not determine	ea by meas	surement	tnen the def	[a	ult degradation coefficient	air condition	oners sha	aii be 0	.25.

importer.

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

				_						
Model(s): Information to										
Outdoor: PURY-			R(-BS)	_]	Indoor:PEFY-P50VMA3-l	E×4 units				
Outdoor heat exchanger				_						
Indoor heat exchanger o			1 4	_	1 4					
Indication if the heater i						1	11 1			
	lared for	the averag	ge heating s	ea	son, parameters for the wa	armer and o	colder he	eating	sea	sons are
optional. Item	Symbol	Value	Unit	_	Item	Symbol		Valu	10	I Init
nem -	Symbol			1	Seasonal space heating	Syllibol		v ait		
Rated heating capacity	$P_{rated,h}$	22.40	kW		energy efficiency	$\eta_{s,h} \\$		155.	.0	%
5 1 11 1				l	Declared coefficient of	performa	ance or	gas	ut	ilization
Declared heating capa					efficiency / auxiliary en	•		_		
temperature 20 °C and o	outdoor te	mperature	e I _j		outdoor temperatures T _i		•			C
$T_i = -7 ^{\circ}C$	Pdh	11.28	kW		$T_i = -7 ^{\circ}C$	COP_d		2.48		%
$T_i = +2 ^{\circ}C$	Pdh	6.87	kW		$T_i = +2 ^{\circ}C$	COP_d		3.58	7	%
$T_j = +7$ °C	Pdh	4.41	kW		$T_i = +7 ^{\circ}C$	COP_d		6.04	7	0/o
$T_{j} = + 12 {}^{\circ}\text{C}$	Pdh	5.01	kW		$T_i = +12 {}^{\circ}\text{C}$	COP_d		7.74	7	0/o
$T_j = bivalent$	Pdh	12.75	kW		$T_j = bivalent$	COP_d		2.00		<u>0/o</u>
temperature	I un	12.73	LK W		temperature	COI d		2.00		70
T_j = operation limit	Pdh	11.25	kW		T_j = operation limit	COP_d		1.90	!	0/o
For air-to-water heat					For water-to-air heat					
pumps: $T_j = -15$ °C (if	Pdh	-	kW		pumps: $T_j = -15$ °C (if	COP_d		-	ŀ	0/o
$T_{OL} < -20 ^{\circ}C)$			_		$T_{OL} < -20 ^{\circ}C)$				_	
	_				For water-to-air heat					
Bivalent temperature	T_{biv}	-10.0	°C		pumps: Operation limit	T_{ol}		-	ľ	$^{\circ}$ C
			4		temperature				_	
			_						_	
Degradation co-	C_{dh}	0.25	-							
efficient heat pumps**				ł						
Power consumption in n	nodes oth	er than 'ac	ctive mode'		Supplementary heater					
	D		1		Electric back-up					
Off mode	P_{OFF}	0.048	kW		heating capacity *	elbu		0.000) [kW
Thermostat-off mode	P_{TO}	0.110	kW		Type of energy input					
Crankaga haatar mada	D	0.018	kW		Standby mode	D		0.125		kW
Crankcase heater mode	¹ CK	0.016	K W]	Standby mode	P_{SB}		0.123	, .	K VV
Other items				L						
					For air-to-air heat					
Capacity control	variable				pumps: Nominal air	-	10200	n	n³/h	
					flow rate, outdoor					
C1 11	 			H	measured For water-/brine-to-air					
Sound power level, indoor / outdoor	 -	78	dB		heat pumps: Rated					
	L_{WA}	70	uБ		brine or water flow			,	n³/h	
measured Emissions of nitrogen				├	rate, outdoor heat	-	-	111	11 /11	
Emissions of nitrogen oxides (if applicable)	NO_x	-	mg/kWh		exchanger					
oxides (ii applicable)				H	CKCHunger					
GWP of the refrigerant		2088	kg CO ₂ ep							
			(100 years)							
					RPORATION					
Contact details					RIGERATION SYSTEMS	WORKS				
					na-City 640-8686,Japan				_	
					ult degradation coefficient					
Where information related	tes to mu	ltı-split ai	r condition	ers	s, the test result and perfor	rmance dat	a may b	e obta	iine	d on the

EN 3 EN

basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

		1 1	ODUCII	TI	TORMATION(I)			
Model(s): Information to Outdoor: PURY					he information relates: ndoor:PEFY-P63VMA3-E×4 un	its		
Outdoor heat exchanger				1.	ildoor.1 Er 1-1 03 v WIA3-E^4 un	1113		
Indoor heat exchanger of								
Type: compressor drive								
if applicable: driver of c	ompresso	r: electric	motor					
Item	Symbol	Value	Unit		Item Symbol		Value	Unit
Rated cooling capacity	P _{rated,c}	28.00	kW		Seasonal space cooling $\eta_{s,c}$ energy efficiency		275.0	%
Declared cooling capa	acity for	part load	d at given		Declared energy efficiency ratio	or gas utiliz	zation e	fficiency /
outdoor temperatures T _j	and indo	or 27°/19°	°C (dry/wet		auxiliary energy factor for p	oart load a	t give	n outdoor
bulb)			_		temperatures T _j			
$T_j = +35$ °C	Pdc	28.00	kW		$T_j = +35 ^{\circ}\text{C}$ EER _d		3.86	%
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc	20.63	kW		$T_j = +30 ^{\circ}\text{C}$ EER _d		4.42	%
$T_i = +25 {}^{\circ}\text{C}$	Pdc	13.26	kW		$T_i = +25 ^{\circ}\text{C}$ EER _d		8.37	%
$T_i = +20 {}^{\circ}\text{C}$	Pdc	8.93	kW		$T_i = +20 ^{\circ}\text{C}$ EER _d		16.12	%
			1		J			7
Degradation co- efficient air	· C _d	0.25	-					
Power consumption in n	nodes othe	er than 'ac	ctive mode'					
Off mode	P_{OFF}	0.048	kW		Crankcase heater mode P _{CK}		0.018	kW
Thermostat-off mode	P_{TO}	0.018	kW		Standby mode P _{SB}		0.048	kW
Other items				Ц				
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured	11100	m ²	³ /h
Sound power level, outdoor	L _{WA}	78	dB					
if engine driven: Emissions of nitrogen oxides			mg/kWh fuel input GCV					
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)					
					PORATION			
Contact details					LIGERATION SYSTEMS WOR	KS		
** If C is not determine					a-City 640-8686,Japan	diti an ana ale	all la a ()	25
					alt degradation coefficient air cor , the test result and performance			
					oination of indoor unit(s) recomm			
loasis of the bellothiance	e or the or	attioor um	n, will a con	ш	mation of muoof unit(s) recomm	ichaca by m	e manu	racturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to Outdoor: PURY	-					∃∨4 unita			
Outdoor heat exchanger					Indoor: PEFY-P63VMA3-I	2×4 units			
Indoor heat exchanger of									
Indication if the heater i				ırv	heater: no				
					son, parameters for the wa	rmer and c	older he	eating s	easons are
optional.					•			Č	
Item	Symbol	Value	Unit	_	Item	Symbol		Value	Unit
Rated heating capacity	$P_{\text{rated},h}$	28.00	kW		Seasonal space heating energy efficiency	$\eta_{s,h} \\$		159.0	%
Dealard heating some	oity for	mont look	l at indeen	1	Declared coefficient of	performa	nce or	gas	utilization
Declared heating capa temperature 20 °C and of		_			efficiency / auxiliary en	ergy factor	for pa	irt load	l at given
_					outdoor temperatures T _j	COD		2.70	٦٨
$T_j = -7$ °C	Pdh	14.22	kW		$T_j = -7$ °C	COP_d		2.70	%
$T_j = +2$ °C	Pdh	8.86	kW		$T_j = +2$ °C	COP_d		3.78	- %
$T_j = +7 ^{\circ}\text{C}$	Pdh	5.56	kW		$T_j = +7$ °C	COP_d		5.67	%
$T_j = +12 ^{\circ}C$	Pdh	4.93	kW		$T_j = +12 ^{\circ}\text{C}$	COP_d		6.90	%
$T_j = bivalent$	Pdh	16.07	kW		$T_j = bivalent$	COP_d		1.95	%
temperature			1		temperature				_
$T_j = operation limit$	Pdh	12.60	kW		$T_j = \text{operation limit}$	COP_d		1.78	%
For air-to-water heat					For water-to-air heat				
pumps: $T_j = -15$ °C (if	Pdh	-	kW		pumps: $T_j = -15$ °C (if	COP_d		-	%
$T_{OL} < -20$ °C)					$T_{OL} < -20 ^{\circ}C)$				
					For water-to-air heat				
Bivalent temperature	$T_{\rm biv}$	-10.0	°C		pumps: Operation limit	T_{ol}		-	°C
					temperature				
			1		•				7
Degradation co-			1						1
efficient heat pumps**	C_{dh}	0.25	-						
		<u> </u>		l					•
Power consumption in r	nodes oth	er than 'a	ctive mode'		Supplementary heater				
Off mode	P_{OFF}	0.048	kW		Electric back-up	elbu		0.000	kW
Thermostat-off mode	P_{TO}	0.110	kW		heating capacity * Type of energy input				
			1		'			0.105	1 ***
Crankcase heater mode	P _{CK}	0.018	kW		Standby mode	P_{SB}		0.125	kW
Other items				L					
					For air-to-air heat				
Capacity control	variable				pumps: Nominal air	-	11100	m ³	/h
					flow rate, outdoor				
			ı	L	measured				
Sound power level,			150		For water-/brine-to-air				
indoor / outdoor	L_{WA}	80	dB		heat pumps: Rated				. 19
measured				L	brine or water flow	ļ- l	-	m ³	/h
Emissions of nitrogen	NO.	_	mg/kWh		rate, outdoor heat				
oxides (if applicable)	^		0	L	exchanger				
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
	MITCIII	SICHI ET	ECTRIC CO	ЛТ.	<u>I </u>				
Contact details	1				RIGERATION RIGERATION SYSTEMS	WODES			
Contact details						WOKKS			
** If C : 4 1 4 '					a-City 640-8686, Japan	af 1 4		1 1 - 0 0	5
	-				ult degradation coefficient	_	_		
					s, the test result and perfor				
basis of the performance	e of the o	utdoor un	it, with a co	m	bination of indoor unit(s) r	ecommende	ed by the	e manu	tacturer or
I man out on									

EN 5 EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to												
Outdoor: PURY-P300YNW-A1/TR (-BS) Indoor: PEFY-P50VMA3-E×6 units												
Outdoor heat exchanger												
Indoor heat exchanger o												
Type: compressor driver												
if applicable: driver of c				T4	C-mhal	Value	T Table					
Item	Symbol	Value	Unit		Symbol	Value	Unit					
Rated cooling capacity	,	33.50	kW	Seasonal space cooling energy efficiency	$\eta_{s,c}$	262.0	%					
Declared cooling capa	city for	part load	d at given	Declared energy efficier	ncy ratio or gas u	itilization ef	ficiency /					
outdoor temperatures T _j	and indo	or 27°/19°	°C (dry/wet	auxiliary energy facto	r for part load	d at given	outdoor					
bulb)			_	temperatures T _j			_					
$T_j = +35 ^{\circ}\text{C}$	Pdc	33.50	kW		EER _d	3.73	%					
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc	24.68	kW	$T_j = +30 ^{\circ}\mathrm{C}$	EER_d	4.24	%					
$T_j = +25 ^{\circ}\text{C}$	Pdc	15.87	kW		EER_d	8.13	%					
$T_i = +20 {}^{\circ}\text{C}$	Pdc	11.26	kW		EER_d	14.27	%					
			1				1					
Degradation co- efficient air	C_d	0.25	<u>- </u>									
Power consumption in n	nodes othe	er than 'ac	etive mode'									
Off mode	P_{OFF}	0.056	kW	Crankcase heater mode	P_{CK}	0.021	kW					
Thermostat-off mode	P_{TO}	0.021	kW	Standby mode	P_{SB}	0.056	kW					
			1									
Other items												
Capacity control	variable			For air-to-air a conditioner: Nominal a flow rate, outdoomeasured	1- 11200	00 m ³ /	'h					
Sound power level, outdoor	L _{WA}	80	dB									
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV									
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)									
				RPORATION								
Contact details				RIGERATION SYSTEM	S WORKS							
** ICC : 1				na-City 640-8686,Japan	1:/:	1 11 1 0	25					
1				ault degradation coefficien								
		-		rs, the test result and perfection		•						
basis of the performance	e of the of	ataoor un	it, with a con	nbination of indoor unit(s)	recommended by	y tne manut	acturer or					

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to	-					Ev6 unita			
Outdoor: PURY Outdoor heat exchanger					Indoor: PEFY-P50VMA3-l	E×6 units			
Indoor heat exchanger of									
Indication if the heater i				ırv	heater: no				
					son, parameters for the wa	armer and co	older he	eating se	easons are
optional.					•			Ü	
Item	Symbol	Value	Unit		Item	Symbol		Value	Unit
Rated heating capacity	$P_{\text{rated},h}$	33.50	kW		Seasonal space heating energy efficiency	$\eta_{s,h} \\$		149.0	%
5 1 11				l	Declared coefficient of	performa	nce or	gas	utilization
Declared heating capa		_			efficiency / auxiliary en	-		_	
temperature 20 °C and o	outdoor te	emperature	e T _j		outdoor temperatures T _i		1		Č
$T_i = -7$ °C	Pdh	16.92	kW		$T_i = -7 ^{\circ}C$	COP_d		2.71	%
$T_i = +2 ^{\circ}C$	Pdh	10.30	kW		$T_i = +2 ^{\circ}C$	COP_d		3.14	%
$T_i = +7 ^{\circ}C$	Pdh	6.62	kW		$T_i = +7 ^{\circ}C$	COP_d		6.21	%
$T_{i}^{j} = + 12 {}^{\circ}\text{C}$	Pdh	6.73	kW		$T_{i}^{j} = +12 {}^{\circ}\text{C}$	COP_d		8.01	%
$T_i = bivalent$	D 11	10.12	1		T_i = bivalent			1.00	٦,,
temperature	Pdh	19.13	kW		temperature	COP_d		1.90	%
T_i = operation limit	Pdh	15.00	kW		T_i = operation limit	COP_d		1.74	%
For air-to-water heat	;		1		For water-to-air heat				
pumps: $T_i = -15$ °C (if	Pdh	-	kW		pumps: $T_j = -15$ °C (if	COP_d		-	%
$T_{OL} < -20$ °C)					$T_{OL} < -20$ °C)	_			
OL ,			1		For water-to-air heat				1
Bivalent temperature	T_{biv}	-10.0	°C		pumps: Operation limit	T_{ol}		_	°C
1	011				temperature	OI .			
			1		The state of the				†
Degradation co-	٠ ~		1						┪
efficient heat pumps**	C_{dh}	0.25	-						
	1 .1	.1 1	1.	l	G 1 1 1				•
Power consumption in n	nodes oth	er than 'ac	ctive mode'		Supplementary heater				
Off mode	P_{OFF}	0.056	kW		Electric back-up	elbu		0.000	$_{\rm kW}$
	1 OFF		K VV		heating capacity *	eibu		0.000	K W
Thermostat-off mode	P_{TO}	0.119	kW		Type of energy input				
Crankcase heater mode	P_{CK}	0.021	kW		Standby mode	P_{SB}		0.134	kW
Other items			•	1					
				Γ	For air-to-air heat				
Composites a autural	variable				pumps: Nominal air		14400	m^3	/la
Capacity control	variable				flow rate, outdoor	-	14400	1111	/11
					measured				
Sound power level,					For water-/brine-to-air				
indoor / outdoor	L_{WA}	86	dB		heat pumps: Rated				
measured					brine or water flow]- -	-	m³.	/h
Emissions of nitrogen	NO		mg/kWh		rate, outdoor heat				
oxides (if applicable)	TVO _X		IIIg/K VVII	L	exchanger				
CHIP 64 61		2000	kg CO _{2 ep}						
GWP of the refrigerant		2088	(100 years)						
	MITCHI	SICHI EI	ECTRIC CO	T	<u>I </u>			_	
Contact details	1				RIGERATION SYSTEMS	WODKS			
Contact details	I					WOKKS			
** If C. is not determine					a-City 640-8686,Japan ult degradation coefficient	of heat num	ne chall	l he 0.2	5
					s, the test result and perfor	_	_		
					s, the test result and perior bination of indoor unit(s) r		-		
importer	c or the o	uiuooi uii	ii, wiiii a co	111	omanon of muoof unit(s) f	Commende	a by the	c manul	acturer or

EN 7 EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

			OP C T I	T (T OTT) HITTO	1 1(1)			
Model(s): Information to	-			the information reloor: PEFY-P63VM		 FV-P50VI	—— МАЗ-Е×	2 units
Outdoor heat exchanger				MI.I LI I I 05 11.1.	AJ L Tumo, I LI	1-15011	VII 1.5 L	Z unius
Indoor heat exchanger o								
Type: compressor driver								
if applicable: driver of c	ompresso	r: electric	motor					
Item	Symbol	Value	Unit	Item	Symbol		Value	Unit
Rated cooling capacity	P _{rated,c}	40.00	kW	Seasonal space of energy efficiency	cooling $\eta_{s,c}$		261.0	%
Declared cooling capa	city for	part loa	d at given	Declared energy	efficiency ratio or	gas utiliz	ation ef	ficiency /
outdoor temperatures T _j	-	-	- 1		factor for part	-		-
bulb)				temperatures T _j				
$T_j = +35 ^{\circ}C$	Pdc	40.00	kW	$T_j = +35$ °C	EER_d		3.64] %
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc	29.47	kW	$T_{j} = +30 {}^{\circ}\text{C}$	EER_d		4.50	%
$T_j = +25 ^{\circ}C$	Pdc	18.95	kW	$T_{j} = +25 {}^{\circ}\text{C}$	EER_d		7.63	%
$T_i = +20 {}^{\circ}\text{C}$	Pdc	11.33	kW	$T_{i} = +20 {}^{\circ}\text{C}$	EER_d		14.35	%
,			1	,				†
Degradation co- efficient air	C_d	0.25	- 					<u> </u>
Power consumption in n	nodes othe	er than 'ac	rtive mode'					
_			, I					
Off mode	P _{OFF}		kW	Crankcase heater			0.025	kW
Thermostat-off mode	P_{TO}	0.025	kW	Standby mode	P_{SB}		0.068	kW
0.1								
Other items	Т			For air-to-air	- oir	Т		
Capacity control	variable			conditioner: Nor flow rate, measured		15000	m ³ /	h
Sound power level, outdoor	L _{WA}	81	dB					
if engine driven: Emissions of nitrogen oxides			mg/kWh fuel input GCV					
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)					
				RPORATION				
Contact details				RIGERATION SY				
** 100 1				na-City 640-8686,J		. 1	11.1 0.6	25
** If C _d is not determine								
Where information relat								
basis of the performance	e of the or	atdoor un	it, with a con	ibination of indoor	unit(s) recommen	ded by the	e manufa	acturer or

importer.

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to identify the model(s) to which the information relates: Outdoor: PURY-P350YNW-A1/TR (-BS) Indoor: PEFY-P63VMA3-E×4 units, PEFY-P50VMA3-E×2 units Outdoor heat exchanger of air conditioner: air Indoor heat exchanger of air conditioner: air Indication if the heater is equipped with a supplementary heater: no Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional. Item Symbol Value Unit Item Symbol Value Unit Seasonal space heating kW Rated heating capacity P_{rated,h} 40.00 146.0 % energy efficiency Declared coefficient of performance or gas utilization Declared heating capacity for part load at indoor efficiency / auxiliary energy factor for part load at given temperature 20 °C and outdoor temperature T_i outdoor temperatures T_i $T_i = -7$ °C Pdh 20.35 $T_i = -7$ °C COP_d kW 2.60 % $T_i = +2 \, ^{\circ}C$ Pdh 12.38 $T_i = +2 \, ^{\circ}C$ 3.00 <u>%</u> kW COP_d $T_i = +7$ °C Pdh $T_i = +7$ °C COP_d 7.96 kW 6.37 % $T_{i} = +12 \, {}^{\circ}\text{C}$ Pdh 6.82 kW $T_i = +12 \, {}^{\circ}\text{C}$ COP_d 8.11 <u>%</u> $T_i = bivalent$ $T_i = bivalent$ Pdh 23.00 kW COP_d 1.98 % temperature temperature T_i = operation limit Pdh 18.00 lkW $T_i = operation limit$ COP₄ 1.88 0/0 For water-to-air heat For air-to-water heat pumps: $T_i = -15$ °C (if pumps: $T_i = -15$ °C (if Pdh kW COP_d % $T_{OL} < -20 \, {}^{\circ}C)$ $T_{OL} < -20 \, ^{\circ}C$ For water-to-air heat T_{biv} Bivalent temperature -10.0 °C pumps: Operation limit T_{ol} $^{\circ}C$ temperature co- C_{dh} Degradation 0.25 efficient heat pumps** Power consumption in modes other than 'active mode' Supplementary heater Electric back-up Off mode POFF 0.068 kW 0.000 kW elbu heating capacity * 0.130 Thermostat-off mode P_{TO} kW Type of energy input Crankcase heater mode P_{CK} 0.025 kW Standby mode P_{SB} 0.145 kW Other items For heat air-to-air pumps: Nominal air 15000 Capacity control variable m³/h flow rate, outdoor measured Sound power level. For water-/brine-to-air 83 dΒ Rated indoor outdoor L_{WA} pumps: brine flow m³/h measured or water Emissions of nitrogen rate, outdoor heat NO, mg/kWh oxides (if applicable) exchanger kg CO₂ ep 2088 GWP of the refrigerant (100 years) MITSUBISHI ELECTRIC CORPORATION Contact details AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan ** If C_d is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

EN 9 EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

			ODCCI	_	11 014:11111011(1)			
Model(s): Information to						NEEV DOM	3442 E	4
Outdoor: PURY-				0	or: PEFY-P71VMA3-E×2 units, I	PEFY-P63V	MA3-E	×4 units
Indoor heat exchanger of								
Type: compressor driver								
if applicable: driver of c								
Item	Symbol	Value			Item Symbol		Value	Unit
Rated cooling capacity	P _{rated,c}	45.00	kW		Seasonal space cooling energy efficiency $\eta_{s,c}$		249.0	%
Declared cooling capa	city for	part loa	d at given		Declared energy efficiency ratio	or gas utili	zation e	fficiency /
outdoor temperatures T _j bulb)	and indo	or 27°/19	°C (dry/wet		auxiliary energy factor for presentation T_i	art load a	at give	n outdoor
$T_j = +35 ^{\circ}\text{C}$	Pdc	45.00	kW		$T_i = +35 ^{\circ}\text{C}$ EER _d		3.08	%
$T_i = +30 {}^{\circ}\text{C}$	Pdc	33.16	kW		$T_j = +30 ^{\circ}\text{C}$ EER _d		4.19	%
$T_{i} = +25 {}^{\circ}\text{C}$	Pdc	21.32	kW		$T_i = +25 ^{\circ}\text{C}$ EER _d		7.21	%
$T_{i} = +20 {}^{\circ}\text{C}$	Pdc	12.41	kW		$T_i = +20 ^{\circ}\text{C}$ EER _d		15.62	⊣ ‰
,			1					7
Degradation co- efficient air	C_d	0.25	-					
Power consumption in n	nodes othe	er than 'ac	etive mode'					
_			_					
Off mode	P _{OFF}		kW		Crankcase heater mode P _{CK}		0.025	kW
Thermostat-off mode	P_{TO}	0.025	kW		Standby mode P _{SB}		0.068	kW
Other items		-		l				
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured	16200	m³	³/h
Sound power level, outdoor	L_{WA}	83	dB					
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV					
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)					
Contact details	AIR-COI 5-66,Teb	NDITION oira 6 Cho	NING & RE me,Wakaya	Fl m	RPORATION RIGERATION SYSTEMS WOR 1a-City 640-8686,Japan			
** If C _d is not determine	ed by mea	surement	then the de	fa	ult degradation coefficient air con	ditioners sh	all be 0	.25.
Where information relation	tos to mul	ti anlit ai	n aanditian		the test regult and performance	data max h	a abtai	nad on tha

importer.

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to identify the model(s) to which the information relates: Outdoor: PURY-P400YNW-A1/TR (-BS) Indoor: PEFY-P71VMA3-E×2 units, PEFY-P63VMA3-E×4 units Outdoor heat exchanger of air conditioner: air Indoor heat exchanger of air conditioner: air Indication if the heater is equipped with a supplementary heater: no Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional. Item Symbol Value Unit Item Symbol Value Unit Seasonal space heating kW Rated heating capacity P_{rated,h} 45.00 161.0 % energy efficiency Declared coefficient of performance or gas utilization Declared heating capacity for part load at indoor efficiency / auxiliary energy factor for part load at given temperature 20 °C and outdoor temperature T_i outdoor temperatures T_i 22.58 $T_i = -7$ °C COP_d Pdh kW 2.66 % $T_i = +2 \, ^{\circ}C$ Pdh $T_i = +2 \, ^{\circ}C$ <u>%</u> 13.73 kW COP_d 3.69 $T_i = +7$ °C Pdh $T_i = +7$ °C 8.83 kW COP_d 6.01 % $T_{i} = +12 \, {}^{\circ}\text{C}$ Pdh 7.96 kW $T_i = +12 \, {}^{\circ}\text{C}$ COP_d 8.29 <u>%</u> $T_i = bivalent$ $T_i = bivalent$ Pdh 25.50 kW COP_d 2.00 % temperature temperature T_i = operation limit 20.00 kW $T_i = operation limit$ COP₄ 1.83 0/0 For water-to-air heat For air-to-water heat pumps: $T_i = -15$ °C (if pumps: $T_i = -15$ °C (if Pdh kW COP_d % $T_{OL} < -20 \, {}^{\circ}C)$ $T_{OL} < -20 \, ^{\circ}C$ For water-to-air heat T_{biv} Bivalent temperature -10.0 °C pumps: Operation limit T_{ol} $^{\circ}C$ temperature co- C_{dh} Degradation 0.25 efficient heat pumps** Power consumption in modes other than 'active mode' Supplementary heater Electric back-up Off mode POFF 0.068 kW 0.000 kW elbu heating capacity * 0.130 Thermostat-off mode P_{TO} kW Type of energy input Crankcase heater mode P_{CK} 0.025 kW Standby mode P_{SB} 0.145 kW Other items For air-to-air heat pumps: Nominal air 18900 Capacity control variable m³/h flow rate, outdoor measured Sound power level. For water-/brine-to-air outdoor L_{WA} 88 dΒ Rated indoor pumps: flow m³/h measured brine or water Emissions of nitrogen rate, outdoor heat NO, mg/kWh oxides (if applicable) exchanger kg CO₂ ep 2088 GWP of the refrigerant (100 years) MITSUBISHI ELECTRIC CORPORATION Contact details AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan ** If C_d is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

EN ₁₁ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to							MA2 Ex	(1 mita
Outdoor heat exchanger				oor:PEFY-P63VMA3-E	×4 units, PEF	1-P30V	MA3-E	4 units
Indoor heat exchanger o								
Type: compressor driver								
if applicable: driver of c								
Item	Symbol	Value		Item	Symbol		Value	Unit
Rated cooling capacity	-	50.00	kW	Seasonal space coolin energy efficiency			253.0	%
Declared cooling capa outdoor temperatures T_j bulb) $T_j = +35$ °C		or 27°/19°		Declared energy effic auxiliary energy fac temperatures T_j $T_j = +35$ °C				
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc		kW	$T_j = +30 ^{\circ}\text{C}$	EER_d		4.20	%
$T_i = +25 ^{\circ}C$	Pdc		kW	$T_i = +25 ^{\circ}\text{C}$	EER_d		7.24	%
$T_j = +20$ °C	Pdc		kW	$T_j = +20 ^{\circ}\text{C}$	EER_d		15.92	%
Degradation co- efficient air	C_d	0.25	-					
Power consumption in n Off mode Thermostat-off mode	nodes othe ${ m P}_{ m OFF} \ { m P}_{ m TO}$		kW kW	Crankcase heater mod Standby mode	le P _{CK} P _{SB}		0.028 0.076	kW kW
Other items								
Capacity control	variable			For air-to-air conditioner: Nominal flow rate, outcomeasured	air air door	16200	m^3 /	Th
Sound power level, outdoor	L _{WA}	83	dB					
if engine driven: Emissions of nitrogen oxides	1	-	mg/kWh fuel input GCV					
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)					
Contact details	AIR-CON 5-66,Tebi	NDITION ira 6 Cho	NING & REF ome,Wakayan	RPORATION RIGERATION SYSTE na-City 640-8686,Japan	1			
** If C _d is not determine Where information relations basis of the performance	tes to mult	ti-split ai	r conditioner	-	erformance da	ta may b	e obtain	ed on the

oporter.

(1) This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to identify the model(s) to which the information relates: Outdoor: PURY-P450YNW-A1/TR (-BS) Indoor: PEFY-P63VMA3-E×4 units, PEFY-P50VMA3-E×4 units Outdoor heat exchanger of air conditioner: air Indoor heat exchanger of air conditioner: air Indication if the heater is equipped with a supplementary heater: no Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional. Item Symbol Value Unit Item Symbol Value Unit Seasonal space heating kW Rated heating capacity P_{rated,h} 50.00 158.0 % energy efficiency Declared coefficient of performance or gas utilization Declared heating capacity for part load at indoor efficiency / auxiliary energy factor for part load at given temperature 20 °C and outdoor temperature T_i outdoor temperatures T_i Pdh 25.26 $T_i = -7$ °C COP_d 2.97 kW % $T_i = +2 \, ^{\circ}C$ Pdh 15.38 $T_i = +2 \, ^{\circ}C$ 3.25 % kW COP_d $T_i = +7$ °C Pdh $T_i = +7$ °C COP_d 9.89 kW 6.58 % $T_{i} = +12 \, {}^{\circ}\text{C}$ Pdh 8.28 kW $T_i = +12 \, {}^{\circ}C$ COP_d 8.53 % $T_i = bivalent$ $T_i = bivalent$ Pdh 28.56 kW COP_d 1.95 % temperature temperature T_i = operation limit 22.40 kW $T_i = operation limit$ COP₄ 1.92 0/0 For water-to-air heat For air-to-water heat pumps: $T_i = -15$ °C (if pumps: $T_i = -15$ °C (if Pdh kW COP_d % $T_{OL} < -20 \, {}^{\circ}C)$ $T_{OL} < -20 \, ^{\circ}C$ For water-to-air heat T_{biv} Bivalent temperature -10.0 °C pumps: Operation limit T_{ol} $^{\circ}C$ temperature co- C_{dh} Degradation 0.25 efficient heat pumps** Power consumption in modes other than 'active mode' Supplementary heater Electric back-up Off mode POFF 0.076 kW 0.000 kW elbu heating capacity * 0.139 Thermostat-off mode P_{TO} kW Type of energy input Crankcase heater mode P_{CK} 0.028 kW Standby mode P_{SB} 0.153 kW Other items For air-to-air heat pumps: Nominal air 18900 Capacity control variable m³/h flow outdoor rate, measured Sound power level. For water-/brine-to-air 89 dΒ Rated indoor outdoor L_{WA} pumps: brine flow m³/h measured or water Emissions of nitrogen rate, outdoor heat NO, mg/kWh oxides (if applicable) exchanger kg CO₂ ep 2088 GWP of the refrigerant (100 years) MITSUBISHI ELECTRIC CORPORATION Contact details AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan ** If C_d is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the

importer.

FΝ FΝ 13

basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

		1 11	ODUCI	1.	MI ORMATION(I)				
Model(s): Information to Outdoor: PURY	-				the information relates: indoor:PEFY-P63VMA3-	F×8 units			
Outdoor heat exchanger					ildoor.1 L1 1-1 03 v WA3-	L^0 units			
Indoor heat exchanger of									
Type: compressor driver									
if applicable: driver of c									
Item	Symbol	Value	Unit		Item S	Symbol		Value	Unit
Rated cooling capacity	P _{rated,c}	56.00	kW		Seasonal space cooling energy efficiency	ls,c		250.0	%
Declared cooling capa	city for	part loa	d at given	1	Declared energy efficiend	cy ratio or	gas utiliz	zation e	fficiency /
outdoor temperatures T	and indo	or 27°/19	°C (dry/wet		auxiliary energy factor	for part	load a	t giver	outdoor
bulb)			_		temperatures T _j				_
$T_j = +35 ^{\circ}\text{C}$	Pdc	56.00	kW		$T_j = +35 ^{\circ}\text{C}$	EER_d		3.02	%
$T_i = +30 {}^{\circ}\text{C}$	Pdc	41.26	kW			EER _d		3.81	%
$T_i = +25 {}^{\circ}\text{C}$	Pdc	26.53	kW			EER_d		7.85	%
$T_j = +20 ^{\circ}C$	Pdc	14.09	kW			EER _d		15.22	%
Degradation co- efficient air	· C _d	0.25	<u>-</u>						
Power consumption in r	nodes oth	er than 'ac	ctive mode'						
Off mode	P_{OFF}	0.076	kW		Crankcase heater mode	P_{CK}		0.028	kW
Thermostat-off mode	P_{TO}	0.028	kW		Standby mode	P_{SB}		0.076	kW
Other items				ł					
Other items	T			┝	For air-to-air ai	r	Г		
Capacity control	variable				conditioner: Nominal ai flow rate, outdoo measured	r -	17700	m³.	/h
Sound power level, outdoor	$^{\prime}L_{ m WA}$	82	dB						
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
Contact details	5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan								
					ult degradation coefficient				
Where information rela	tes to mu	lti-split ai	r condition	ers	s, the test result and perfo	rmance dat	ta may b	e obtair	ed on the

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to Outdoor: PURY	-				the information relates: Indoor∶PEFY-P63VMA3-l	Ev0 mita			
Outdoor heat exchanger				_	indoor: PEF 1-P03 VIVIA3-I	E^8 umis			
Indoor heat exchanger of									
Indication if the heater i				ırv	heater: no				
					son, parameters for the wa	armer and co	older he	eating se	asons are
optional.								C	
Item	Symbol	Value	Unit		Item	Symbol		Value	Unit
Rated heating capacity	$P_{\text{rated},h}$	56.00	kW		Seasonal space heating energy efficiency	$\eta_{s,h}$		159.0	%
D 1 11 '	·, c	. 1	1 , 1	1	Declared coefficient of	f performan	nce or	gas	utilization
Declared heating capa temperature 20 °C and of		_			efficiency / auxiliary en	ergy factor	for pa	ırt load	at given
T - 7 °C	D.JL.	29.42]kW		outdoor temperatures T _j	COP_d	ĺ	2.60	امر
$T_j = -7 ^{\circ}C$ $T_i = +2 ^{\circ}C$	Pdh Pdh	28.42 17.30	kW		$T_j = -7 ^{\circ}\text{C}$ $T_i = +2 ^{\circ}\text{C}$	COP_d		2.69 3.51	%
$T_i = +7 ^{\circ}C$	Pdh		4		$T_i = +7 ^{\circ}C$	COP_d		6.54	4
		11.12	kW		1 2				%
$T_j = +12 ^{\circ}\text{C}$	Pdh	9.90	kW		$T_j = +12 ^{\circ}\text{C}$	COP_d		7.15	%
$T_j = bivalent$	Pdh	32.13	kW		$T_j = bivalent$	COP_d		2.01	%
temperature	D.11.	25.20	1 337		temperature	COD		2.00	٠,
T_j = operation limit	Pdh	25.20	kW		T_j = operation limit For water-to-air heat	COP_d		2.00	%
For air-to-water heat			1 777			COD			
pumps: $T_j = -15$ °C (if	Pan	-	kW		pumps: $T_j = -15$ °C (if	COP_d		-	%
$T_{OL} < -20 ^{\circ}C)$			4		$T_{OL} < -20$ °C)				4
	Tr.	1.00			For water-to-air heat				
Bivalent temperature	$T_{\rm biv}$	-10.0	°C		pumps: Operation limit	T_{ol}		-	°C
			4		temperature				4
			4						4
Degradation co-	C_{dh}	0.25	_						
efficient heat pumps**	dii								
Power consumption in r	nodes oth	er than 'a	ctive mode'		Supplementary heater				
			1		Electric back-up				1
Off mode	P_{OFF}	0.076	kW		heating capacity *	elbu		0.000	kW
Thermostat-off mode	\mathbf{P}_{TO}	0.147	kW		Type of energy input			ı	
Crankcase heater mode	$P_{CK} \\$	0.028	kW		Standby mode	P_{SB}		0.153	kW
Other items		<u>.</u>		1		ļ.			
				1	For air-to-air heat				
					pumps: Nominal air		.==00		/1
Capacity control	variable				flow rate, outdoor	-	17700	m ³ /	n
					measured				
Sound power level,	,			1	For water-/brine-to-air				
indoor / outdoor	L_{WA}	84	dB		heat pumps: Rated				
lmeasured					brine or water flow	- -		m^3	h'
Emissions of nitrogen	NO		/1-33/1-	1	rate, outdoor heat				
oxides (if applicable)	NO_x	-	mg/kWh		exchanger				
			kg CO2 ep	Γ					
GWP of the refrigerant		2088	(100 years)						
	MITTOLI		` '	L	DOD ATION				
G 1	1				RPORATION	****			
Contact details	1				RIGERATION SYSTEMS	WORKS			
** ICC					na-City 640-8686,Japan	C1 ·	1	11 02	_
					ult degradation coefficient	_	_		
		-			s, the test result and perfor		-		
_	e of the o	utdoor un	it, with a co	m	bination of indoor unit(s) r	ecommende	d by the	e manuf	acturer or
importer									

EN ₁₅ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

		1 1	ODUCI	1.	M'ORMATION(I)				
Model(s): Information to Outdoor: PURY	-				the information relates: indoor:PEFY-P71VMA3-	F×8 units			
Outdoor heat exchanger					Haddi I El I I / I / II II I	E 0 units			
Indoor heat exchanger of									
Type: compressor drive									
if applicable: driver of c									
Item	Symbol	Value	Unit		Item S	Symbol		Value	Unit
Rated cooling capacity	P _{rated,c}	63.00	kW		Seasonal space cooling energy efficiency	ls,c		239.0	%
Declared cooling capa	city for	part loa	d at given	1	Declared energy efficience	cy ratio or	gas utiliz	zation e	fficiency /
outdoor temperatures T	and indo	or 27°/19	°C (dry/wet		auxiliary energy factor	for part	load a	ıt givei	n outdoor
bulb)				l	temperatures T _j				
$T_i = +35 ^{\circ}\text{C}$	Pdc	63.00	kW	l	$T_j = +35 ^{\circ}\text{C}$	EER_d		2.84	%
$T_i = +30 {}^{\circ}\text{C}$	Pdc	46.42	kW	l		EER _d		3.51	%
$T_{i} = +25 {}^{\circ}\text{C}$	Pdc	29.84	kW	l		EER _d		7.24	%
$T_i = +20 ^{\circ}C$	Pdc	14.10	kW	l		EER _d		16.85	%
			1	l	J	u			┤ ~
Degradation co- efficient air	C_d	0.25							1
				1					
Power consumption in r	nodes oth	er than 'ac	ctive mode'	l					
Off mode	P_{OFF}	0.076	kW	l	Crankcase heater mode	P_{CK}		0.028	kW
Thermostat-off mode	P_{TO}	0.028	kW	l	Standby mode	P_{SB}		0.076	kW
			1	l	•				
Other items			•	1					
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured	· _	19500	m ³	//h
Sound power level, outdoor	$^{\prime}L_{WA}$	83	dB						
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
Contact details	AIR-CO: 5-66,Teb	NDITION oira 6 Cho	NING & RE ome,Wakaya	Fl	RPORATION RIGERATION SYSTEMS a-City 640-8686,Japan				
					ult degradation coefficient				
Where information rela	tes to mu	lti-split ai	r condition	ers	s, the test result and perfo	rmance dat	a may b	e obtair	ned on the

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

(1) This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to	-					Ev0 '4			
Outdoor: PURY				_	Indoor: PEFY-P71VMA3-	E×8 units			
Outdoor heat exchanger									
Indoor heat exchanger of Indication if the heater is					· 1				
					ason, parameters for the wa	armer and o	colder he	eating se	easons are
optional.			6		, r				
Item	Symbol	Value	Unit		Item	Symbol		Value	Unit
	<u> </u>	1		1	Seasonal space heating	•			1
Rated heating capacity	P _{rated,h}	63.00	kW		energy efficiency	$\eta_{s,h}$		159.0	%
Declared heating capa	city for	nart load	l at indoor]	Declared coefficient of	-		_	
temperature 20 °C and of	•	-			efficiency / auxiliary en	ergy facto	r for pa	art load	at given
_			,		outdoor temperatures T _j				7
$T_j = -7$ °C	Pdh	31.13	kW		$T_j = -7 ^{\circ}C$	COP_d		2.76	%
$T_j = +2 ^{\circ}C$	Pdh	18.95	kW		$T_j = +2 ^{\circ}C$	COP_d		3.60	%
$T_j = +7 ^{\circ}\text{C}$	Pdh	12.18	kW		$T_j = +7 ^{\circ}C$	COP_d		6.11	%
$T_j = +12 ^{\circ}C$	Pdh	9.90	kW		$T_j = +12 ^{\circ}\text{C}$	COP_d		6.70	%
$T_j = bivalent$	Pdh	35.19	kW		$T_j = bivalent$	COP_d		1.95	<u>0/o</u>
temperature			1		temperature				4
$T_j = operation limit$	Pdh	27.60	kW		T_j = operation limit	COP_d		1.85	%
For air-to-water heat					For water-to-air heat	~~ ~			
pumps: $T_j = -15$ °C (if	Pdh	-	kW		pumps: $T_j = -15$ °C (if	COP_d		-	9/0
$T_{OL} < -20 ^{\circ}C)$			4		$T_{OL} < -20 ^{\circ}\text{C}$				
	TD.	1.00			For water-to-air heat				
Bivalent temperature	$T_{\rm biv}$	-10.0	°C		pumps: Operation limit	T_{ol}		-	°C
			4		temperature				_
			4						_
Degradation co-	C_{dh}	0.25	-						
Degradation co- efficient heat pumps**				-					
Power consumption in r	nodes oth	er than 'ac	ctive mode'		Supplementary heater				
			1		Electric back-up				٦
Off mode	P_{OFF}	0.076	kW		heating capacity *	elbu		0.000	kW
Thermostat-off mode	P_{TO}	0.147	kW		Type of energy input				1
			1			, n		0.450	
Crankcase heater mode	P_{CK}	0.028	kW		Standby mode	P_{SB}		0.153	kW
Other items		-				_			
					For air-to-air heat				
Capacity control	variable				pumps: Nominal air	<u> </u>	25200	m^3	/h
Cupacity control	Variable				flow rate, outdoor		20200		- 11
					measured				
Sound power level,					For water-/brine-to-air				
indoor / outdoor	L_{WA}	89	dB		heat pumps: Rated				
measured					brine or water flow	-	-	m³.	/h
Emissions of nitrogen	NO.	_	mg/kWh		rate, outdoor heat				
oxides (if applicable)	^		0	┞	exchanger				
GWP of the refrigerant		2088	kg CO2 ep						
GWI of the terrigerant		2000	(100 years)						
	MITSUI	BISHI EL	ECTRIC CO	ÖI	RPORATION	•			
Contact details	AIR-CO	NDITION	NING & RE	Fl	RIGERATION SYSTEMS	WORKS			
					na-City 640-8686,Japan				
** If C _d is not determine					ult degradation coefficient	of heat pur	nps shal	1 be 0,2:	5.
					s, the test result and perform	_	_		
					bination of indoor unit(s) r				
limporter					` '		•		

EN ₁₇ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

					MTORMATION(1)				
Model(s): Information to Outdoor: PURY-				h 1	the information relates: Indoor: PEFY-P50VMA3-E	×4 unite			
Outdoor heat exchanger				_	IIIdoof.1 Lf 1-1 50 v WAS-L	· T units			
Indoor heat exchanger o				_					
Type: compressor driver				_					
if applicable: driver of c				_					
Item	Symbol		Unit		Item Sym	ıbol		Value	Unit
Rated cooling capacity	P _{rated,c}	22.40	kW		Seasonal space cooling $\eta_{s,c}$ energy efficiency			303.0	%
Declared cooling capa	city for	part loa	d at given	İ	Declared energy efficiency r	atio or g	as utiliz	zation e	fficiency /
outdoor temperatures T _j bulb)	and indo	or 27°/19	°C (dry/wet		auxiliary energy factor for temperatures T _i	or part	load a	t giver	outdoor
$T_i = +35 ^{\circ}\text{C}$	Pdc	22.40	kW		$T_j = +35 ^{\circ}\text{C}$ EER	\mathcal{L}_{d}		4.72	%
$T_i = +30 {}^{\circ}\text{C}$	Pdc	16.51	kW		$T_j = +30 ^{\circ}\text{C}$ EER	$\xi_{\rm d}$		5.70	%
$T_i = +25 ^{\circ}C$	Pdc	10.61	kW		$T_i = +25 ^{\circ}\text{C}$ EER	$\xi_{\rm d}$		9.70	%
$T_j^J = +20 ^{\circ}C$	Pdc	8.26	kW		$T_j^J = +20 ^{\circ}\text{C}$ EEF	\mathcal{R}_{d}		13.21	%
Degradation co- efficient air	C_d	0.25	-						
Power consumption in n	nodes othe	er than 'ac	ctive mode'						
Off mode Thermostat-off mode	$\begin{array}{c} P_{OFF} \\ P_{TO} \end{array}$	0.048	kW kW		Crankcase heater mode P _C Standby mode P _S			0.018 0.048	kW kW
Other items			1	ł					
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured		10200	m³.	/h
Sound power level, outdoor	L_{WA}	76	dB	L					
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
Contact details	AIR-CO 5-66,Teb	NDITION ira 6 Cho	NING & RE ome,Wakaya	FI	RPORATION RIGERATION SYSTEMS W 1a-City 640-8686,Japan				
					ult degradation coefficient air s, the test result and performa				

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to	-			h		Ev4 mita				
Outdoor: PURY Outdoor heat exchanger				_	Indoor: PEFY-P50VMA3	-E×4 units				
Indoor heat exchanger				_						
Indication if the heater i				ars	heater: no					
					ason, parameters for the wa	armer and c	older he	eating	sea	isons are
Item	Symbol	Value	Unit	_	Item	Symbol		Valı	ıe	Unit
		1		1	Seasonal space heating	·				
Rated heating capacity	P _{rated,h}	22.40	kW		energy efficiency	$\eta_{s,h}$		157.	.0	%
Declared heating capa	oity for	nort look	l at indoor		Declared coefficient of	f performa	ince or	gas	u	tilization
temperature 20 °C and o	•	-			efficiency / auxiliary en outdoor temperatures T _i	ergy factor	r for pa	art loa	ad	at given
$T_i = -7$ °C	Pdh	11.28	kW		$T_i = -7 ^{\circ}C$	COP_d		2.49		0/0
$T_i = +2 ^{\circ}C$	Pdh	6.87	kW		$T_i = +2 ^{\circ}C$	COP_d		3.62	-	<u>0/o</u>
$T_i = +7 ^{\circ}C$	Pdh	4.41	kW		$T_i = +7$ °C	COP_d		6.14	_	<u>0/o</u>
$T_{j}^{J} = + 12 {}^{\circ}\text{C}$	Pdh	5.01	kW		$T_{i} = +12 {}^{\circ}\text{C}$	COP_d		7.78	_	<u>0/o</u>
T_i^{\prime} = bivalent			1		T_i = bivalent				\neg	
temperature	Pdh	12.75	kW		temperature	COP_d		2.01		%
T_i = operation limit	Pdh	11.25	kW		T_i = operation limit	COP_d		2.05		9/o
For air-to-water heat	;		1		For water-to-air heat	ű				
pumps: $T_i = -15$ °C (if	Pdh	-	kW		pumps: $T_i = -15$ °C (if	COP_d		-		0/0
$T_{OL} < -20$ °C)					$T_{OL} < -20$ °C)	ű				
OL /			1		For water-to-air heat					
Bivalent temperature	T_{biv}	-10.0	°C		pumps: Operation limit	T_{ol}		-		°C
1					temperature	0.				
			1							
Degradation co-	C	0.25	Ī							
Degradation co- efficient heat pumps**	C_{dh}	0.25	-							
Power consumption in r	nodes oth	er than 'a	etive mode!	1	Supplementary heater				•	
	noues our	ei illali a	_ iive iiiode		Supplementary neater					
Off mode	P_{OFF}	0.048	kW		Electric back-up heating capacity *	elbu		0.000)	kW
Thermostat-off mode	P_{TO}	0.110	kW		Type of energy input			-		
Crankcase heater mode	$P_{\rm CK}$	0.018	kW		Standby mode	P_{SB}		0.125	5	kW
Other items				1						
				1	For air-to-air heat					
					pumps: Nominal air		10200		3 /1.	
Capacity control	variable				flow rate, outdoor	-	10200	I.	n³/l	l
]	measured					
Sound power level,					For water-/brine-to-air					
indoor / outdoor	L_{WA}	78	dB		heat pumps: Rated					
measured]	brine or water flow	-	-	n	n³/ł	1
Emissions of nitrogen	NO	_	mg/kWh		rate, outdoor heat					
oxides (if applicable)	T,O _X		mg/R ++ m	Ļ	exchanger					
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)							
	MITSUI	BISHI EL	ECTRIC CO	ΟI	RPORATION	•	<u> </u>			
Contact details	1				RIGERATION SYSTEMS	WORKS				
	1				na-City 640-8686,Japan					
** If C _d is not determine					ult degradation coefficient	of heat pun	nps shal	1 be 0.	,25.	
	-				s, the test result and perform	_	_			
					bination of indoor unit(s) r					
l. *							•			

EN ₁₉ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

					(FORMATION(1)						
Model(s): Information to						٠,					
Outdoor: PURY- Outdoor heat exchanger					Indoor: PEFY-P63VMA3-E×4 un	its					
Indoor heat exchanger o											
Type: compressor driver											
if applicable: driver of c											
Item	Symbol	Value	Unit	- 1	Item Symbol		Value	Unit			
Rated cooling capacity	P _{rated,c}	28.00	kW	:	Seasonal space cooling η _{s,c}		286.0	%			
Declared cooling capa	city for	part load	d at given		Declared energy efficiency ratio of	or gas utiliz	zation ef	ficiency /			
outdoor temperatures T _j bulb)	and indoo	or 27º/19º	°C (dry/wet		auxiliary energy factor for pa temperatures T _i	rt load a	t given	outdoor			
$T_i = +35 ^{\circ}\text{C}$	Pdc	28.00	kW		$T_i = +35 ^{\circ}\text{C}$ EER _d		4.06	%			
$T_i = +30 {}^{\circ}\text{C}$	Pdc	20.63	kW		$T_i = +30 ^{\circ}\text{C}$ EER _d		5.71	%			
$T_i = +25 ^{\circ}\text{C}$	Pdc	13.26	kW		$T_i = +25 ^{\circ}\text{C}$ EER _d		8.71	%			
$T_j = +20 ^{\circ}C$	Pdc	10.00	kW		$T_j = +20 ^{\circ}\text{C}$ EER _d		12.20	%			
]]			
Degradation co- efficient air	C_d	0.25	-								
Power consumption in n	ower consumption in modes other than 'active mode'										
Off mode	$\mathbf{P}_{\mathrm{OFF}}$	0.048	kW		Crankcase heater mode P _{CK}		0.018	kW			
Thermostat-off mode	P_{TO}	0.018	kW		Standby mode P _{SB}		0.048	kW			
0.1		<u> </u>		-							
Other items				H	For air-to-air air						
Capacity control	variable			1	conditioner: Nominal air flow rate, outdoor measured	11100	m ³ /	h			
Sound power level, outdoor	L _{WA}	78	dB								
if engine driven: Emissions of nitrogen oxides	NO _x -		mg/kWh fuel input GCV								
Emissions of nitrogen oxides (if applicable)	NO _x		mg/kWh								
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)								
			ECTRIC CO								
Contact details					IGERATION SYSTEMS WORK	S					
** If C is not determine					a-City 640-8686,Japan Ilt degradation coefficient air cond	iti am ama ala	all lea 0.7	7.5			
$11 C_{\rm d}$ is not determine	a by meas	surement	men me dela	ıau	in degradation coefficient air cond	moners sn	an be 0.2	۷.			

importer.

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Outdoor: PURY	-			h t	the information relates: Indoor: PEFY-P63VMA3	R-F×4 units			
Outdoor heat exchanger				_	IIIdool .1 EF 1-1 05 VIVIAS	-E^+ uiiits			
Indoor heat exchanger of				_					
Indication if the heater i				arv	heater: no				
					ason, parameters for the wa	armer and o	colder he	eating s	easons are
Item	Symbol	Value	Unit	_	Item	Symbol		Value	Unit
				1	Seasonal space heating	•			
Rated heating capacity	P _{rated,h}	28.00	kW		energy efficiency	$\eta_{s,h}$		167.0	
Declared heating capa	city for	part load	Lat indoor		Declared coefficient of	•		-	
temperature 20 °C and o					efficiency / auxiliary en outdoor temperatures T _i	ergy facto	r for pa	art load	at given
$T_i = -7$ °C	Pdh	14.22	kW		$T_i = -7 ^{\circ}C$	COP_d		2.70	%
$T_i = +2 ^{\circ}C$	Pdh	8.86	kW		$T_i = +2 ^{\circ}C$	COP_d		4.03	%
$T_i = +7 ^{\circ}C$	Pdh	5.56	kW		$T_i = +7 ^{\circ}C$	COP_d		5.79	%
$T_i = +12 ^{\circ}C$	Pdh	5.15	kW		$T_i = +12 ^{\circ}\text{C}$	COP_d		8.05	%
$T_j = bivalent$	1 GII		1		$T_i = bivalent$				70
temperature	Pdh	16.07	kW		temperature	COP_d		1.97	%
$T_i = operation limit$	Pdh	12.60	kW		$T_i = \text{operation limit}$	COP_d		1.78	%
For air-to-water heat		12.00	- The state of the		For water-to-air heat	cord		1.70	┤ ′⁰
pumps: $T_j = -15$ °C (if		_	kW		pumps: $T_i = -15$ °C (if	COP_d		<u> </u>	%
$T_{OL} < -20 ^{\circ}\text{C}$. I GII		K VV		$T_{OL} < -20$ °C)	cord			70
10L (-20 C)			1		For water-to-air heat				┪
Bivalent temperature	$T_{\rm biv}$	-10.0	°C		pumps: Operation limit	T_{ol}			°C
Bivaient temperature	1 biv	-10.0			temperature	ı ol		<u> </u>	
			1		lemperature				┥
Dogradation as		-	1						4
Degradation coefficient heat pumps**	C_{dh}	0.25	-						
erncient neat pumps			<u> </u>	┧╵				l .	
Power consumption in r	nodes oth	er than 'ac	ctive mode'		Supplementary heater				
	_		1		Electric back-up				7
Off mode	P_{OFF}	0.048	kW		heating capacity *	elbu		0.000	kW
Thermostat-off mode	P_{TO}	0.110	kW		Type of energy input				
Crankcase heater mode	P_{CK}	0.018	kW		Standby mode	P_{SB}		0.125	kW
Other items		<u>ļ</u>	ļ	†		ļ			
				Τ	For air-to-air heat				
					pumps: Nominal air		11100	3	/1.
Capacity control	variable				flow rate, outdoor	-	11100	m ³	/n
				L	measured				
Sound power level,	,			Г	For water-/brine-to-air				
indoor / outdoor	L_{WA}	80	dB		heat pumps: Rated				
measured					brine or water flow	-	-	m³	/h
Emissions of nitrogen	NO			Γ	rate, outdoor heat				
oxides (if applicable)	NO_{x}	-	mg/kWh	L	exchanger				
GWP of the refrigerant		2088	kg CO ₂ ep						
			(100 years)	\perp					
	MITSUI	BISHI EL	ECTRIC CO	OF	RPORATION				
Contact details	AIR-CO	NDITION	NING & RE	FI	RIGERATION SYSTEMS	WORKS			
					na-City 640-8686,Japan				
					ult degradation coefficient				
					s, the test result and perfor				
basis of the performance	e of the o	utdoor un	it, with a co	m	bination of indoor unit(s) r	ecommend	ed by th	e manu	facturer or
importer.									

EN ₂₁ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to	o identify	the mode	1(a) to which	the information relates							
Outdoor: PURY-	•		` /	Indoor: PEFY-P50VMA	3-E×6 units						
Outdoor heat exchanger											
Indoor heat exchanger o											
Type: compressor driver											
if applicable: driver of c											
Item	Symbol	Value	Unit	Item	Symbol	Valu	ie Unit				
Rated cooling capacity	$P_{\text{rated,c}}$	33.50	kW	Seasonal space cooling energy efficiency	$\eta_{\rm s,c}$	268.	0 %				
Declared cooling capa	city for	part load	d at given	Declared energy efficien	ncy ratio or gas	utilization	efficiency /				
outdoor temperatures T _j				auxiliary energy facto	or for part lo	ad at giv	ven outdoor				
bulb)			_	temperatures T _j							
$T_j = +35 ^{\circ}\text{C}$	Pdc	33.50	kW	$T_{j} = +35 {}^{\circ}\text{C}$	EER_d	4.10	%				
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc	24.68	kW	$T_{j} = +30 {}^{\circ}\text{C}$	EER_d	4.51	%				
$T_i = +25 {}^{\circ}\text{C}$	Pdc	15.87	kW	$T_{i} = +25 {}^{\circ}\text{C}$	EER_d	8.09	%				
$T_i = +20 {}^{\circ}\text{C}$	Pdc	10.05	kW	$T_{i} = +20 {}^{\circ}\text{C}$	EER_d	13.5	4 %				
,			1	,			\neg				
Degradation co- efficient air	C_d	0.25]- 								
Power consumption in n	Power consumption in modes other than 'active mode'										
Off mode	P_{OFF}	0.056	kW	Crankcase heater mode	P_{CK}	0.02	1 kW				
	P_{TO}	0.021	kW	Standby mode	P_{SB}	0.05	6 kW				
			1	·							
Other items											
Capacity control	variable			For air-to-air a conditioner: Nominal a flow rate, outdo measured	1- 112	2000 1	m³/h				
Sound power level, outdoor	L _{WA}	80	dB								
if engine driven: Emissions of nitrogen oxides	I I	-	mg/kWh fuel input GCV								
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)								
				RPORATION		_	_				
Contact details	1			RIGERATION SYSTEM	S WORKS						
** ICC : 1				na-City 640-8686,Japan	1'4'	1 11 1	0.25				
I .				ault degradation coefficier							
		-		rs, the test result and perf		•					
basis of the performance	of the ou	atdoor un	it, with a com	nbination of indoor unit(s)	recommended	by the mar	nufacturer or				

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to	-			h 1		Fue '			
Outdoor: PURY Outdoor heat exchanger				_	Indoor: PEFY-P50VMA3	-E×6 units			
Indoor heat exchanger				_					
Indication if the heater i				-rx	heater no				
					son, parameters for the wa	armer and o	older he	eating s	seasons are
Item	Symbol	Value	Unit	_	Item	Symbol		Value	e Unit
	<u> </u>	1		1	Seasonal space heating	Symoon			
Rated heating capacity	P _{rated,h}	33.50	kW		energy efficiency	$\eta_{s,h}$		162.0	
Declared heating capa	city for	part load	l at indoor	1	Declared coefficient of	-		_	
temperature 20 °C and o	•	-			efficiency / auxiliary en outdoor temperatures T _i	ergy facto	r for pa	art load	d at given
$T_i = -7$ °C	Pdh	16.92	kW	l	$T_i = -7 ^{\circ}C$	COP_d		2.77	%
$T_i = +2 ^{\circ}C$	Pdh	10.30	kW	l	$T_i = +2 ^{\circ}C$	COP_d		3.58	%
$T_i = +7 ^{\circ}C$	Pdh	6.62	kW	l	$T_i = +7 ^{\circ}C$	COP_d		6.41	
$T_{j}^{J} = + 12 {}^{\circ}\text{C}$	Pdh	6.30	kW	l	$T_{i}^{J} = + 12 {}^{\circ}\text{C}$	COP_d		7.95	
T_{i}^{J} = bivalent			1	l	T_i^j = bivalent				
temperature	Pdh	19.13	kW	l	temperature	COP_d		1.92	%
T_i = operation limit	Pdh	15.00	kW	l	T_i = operation limit	COP_d		1.74	%
For air-to-water heat	:		1	l	For water-to-air heat	u			7
pumps: $T_i = -15$ °C (if	Pdh	-	kW	l	pumps: $T_i = -15$ °C (if	COP_d		-	9/0
$T_{OL} < -20$ °C)				l	$T_{OL} < -20$ °C)				
,			1	l	For water-to-air heat				7
Bivalent temperature	T_{biv}	-10.0	°C	l	pumps: Operation limit	T_{ol}		 -	°C
1				l	temperature	0.			
			1	l	1				7
Degradation co-		0.25	1	l					1
Degradation co- efficient heat pumps**	C_{dh}	0.25	-	l					
Power consumption in r	nodes oth	er than 'ac	ctive mode'		Supplementary heater				-
			7	l	Electric back-up				7
Off mode	P_{OFF}	0.056	kW	l	Electric back-up heating capacity *	elbu		0.000	kW
Thermostat-off mode	P_{TO}	0.119	kW		Type of energy input			1	
Crankcase heater mode	P_{CK}	0.021	kW		Standby mode	P_{SB}		0.134	kW
Other items				l					
				Г	For air-to-air heat				
Capacity control	variable			l	pumps: Nominal air		14400		³/h
Capacity control	Variable			l	flow rate, outdoor	-	14400	1111	/11
				L	measured				
Sound power level,	,			l	For water-/brine-to-air				
indoor / outdoor	L_{WA}	86	dB	l	heat pumps: Rated				
measured				L	brine or water flow	-	-	m	3/h
Emissions of nitrogen	NO	_	mg/kWh	l	rate, outdoor heat				
oxides (if applicable)	I VO X		mg/R ++ in	L	exchanger				
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
	MITSUI	BISHI EL	ECTRIC CO	ΣF	RPORATION	•			
Contact details	AIR-CO	NDITION	NING & RE	FΙ	RIGERATION SYSTEMS	WORKS			
	5-66,Tel	oira 6 Cho	me,Wakaya	ım	a-City 640-8686,Japan				
** If C _d is not determine					ult degradation coefficient	of heat pur	nps shal	1 be 0,2	25.
Where information rela	tes to mu	lti-split ai	r conditione	ers	s, the test result and perfor	rmance dat	a may b	e obtai	ned on the
basis of the performance	e of the o	utdoor un	it, with a co	m	bination of indoor unit(s) r	ecommend	ed by th	e manu	ıfacturer or
limporter									

EN ₂₃ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

M - 1-1(-). I. f 4: 4.	: 1 4 ' C -	41	1(-) 41: -1:	41 1 6	<u>'</u>						
Model(s): Information to Outdoor: PURY-	•		` /	the information relates: door: PEFY-P63VMA3-	E×4 units, PE	FY-P50V	/MA3-E	E×2 units			
Outdoor heat exchanger											
Indoor heat exchanger o	f air cond	litioner: ai	ir								
Type: compressor driver											
if applicable: driver of c											
Item	Symbol	Value	Unit	Item	Symbol		Value	Unit			
Rated cooling capacity	$P_{\text{rated,c}}$	40.00	kW	Seasonal space coolin energy efficiency	$^{g}_{\eta_{s,c}}$		263.0	%			
Declared cooling capa				Declared energy efficient	ency ratio or	gas utiliz	ation ef	ficiency /			
outdoor temperatures T _j	and indo	or 27°/19°	°C (dry/wet	auxiliary energy fact	tor for part	load at	given	outdoor			
bulb)			_	temperatures T _j		-		_			
$T_j = +35$ °C	Pdc	40.00	kW	$T_j = +35$ °C	EER_d	-	4.01	%			
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc	29.47	kW	$T_{j} = +30 {}^{\circ}\text{C}$	EER_d	Į.	4.28	0/0			
$T_{j} = +25 {}^{\circ}\text{C}$	Pdc	18.95	kW	$T_{j} = +25 {}^{\circ}\text{C}$	EER_d	[7.89	%			
$T_{j} = +20 {}^{\circ}\text{C}$	Pdc	9.98	kW	$T_{j} = +20 {}^{\circ}\text{C}$	EER_d	Γ	13.98	%			
			1			[†			
Degradation co- efficient air	C _d	0.25	<u>- </u>								
Power consumption in n	ower consumption in modes other than 'active mode'										
Off mode	P_{OFF}	0.068	kW	Crankcase heater mode	P_{CK}		0.025	kW			
Thermostat-off mode	P_{TO}	0.025	kW	Standby mode	P_{SB}		0.068	kW			
Other items						-					
Capacity control	variable			For air-to-air conditioner: Nominal flow rate, outd measured	I-	15000	m ³ /.	h			
Sound power level, outdoor	L_{WA}	81	dB								
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV								
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)								
				RPORATION							
Contact details				RIGERATION SYSTEM	MS WORKS						
** ICC : 1				na-City 640-8686,Japan	1'.'		11.1 0.6	\ <u></u>			
** If C _d is not determine											
Where information relat				-		-					
basis of the performance	e of the ou	atdoor uni	it, with a com	ibination of indoor unit(s	s) recommend	ed by the	: manuta	acturer or			

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to identify the model(s) to which the information relates: Outdoor: PURY-EP350YNW-A1/TR(-BS) Indoor: PEFY-P63VMA3-E×4 units, PEFY-P50VMA3-E×2 units Outdoor heat exchanger of air conditioner: air Indoor heat exchanger of air conditioner: air Indication if the heater is equipped with a supplementary heater: no Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional. Item Symbol Value Unit Item Symbol Value Unit Seasonal space heating 40.00 kW Rated heating capacity P_{rated,h} 162.0 % energy efficiency Declared coefficient of performance or gas utilization Declared heating capacity for part load at indoor efficiency / auxiliary energy factor for part load at given temperature 20 °C and outdoor temperature T_i outdoor temperatures T_i $T_i = -7$ °C Pdh 20.35 $T_i = -7$ °C COP_d 2.49 kW % $T_i = +2 \, ^{\circ}C$ $T_i = +2 \, ^{\circ}C$ Pdh 12.38 % kW COP_d 3.68 $T_i = +7$ °C Pdh $T_i = +7$ °C COP_d 7.96 kW 6.66 % $T_{i} = +12 \, {}^{\circ}\text{C}$ Pdh 7.80 kW $T_i = +12 \, {}^{\circ}C$ COP_d 7.90 <u>%</u> $T_i = bivalent$ $T_i = bivalent$ Pdh 23.00 kW COP_d 2.00 % temperature temperature T_i = operation limit 18.00 kW $T_i = operation limit$ COP₄ 1.88 0/0 For water-to-air heat For air-to-water heat pumps: $T_i = -15$ °C (if pumps: $T_i = -15$ °C (if Pdh kW COP_d % $T_{OL} < -20 \, {}^{\circ}C)$ $T_{OL} < -20 \, ^{\circ}C$ For water-to-air heat $T_{\text{biv}} \\$ Bivalent temperature -10.0 °C pumps: Operation limit T_{ol} $^{\circ}C$ temperature co- C_{dh} Degradation 0.25 efficient heat pumps** Power consumption in modes other than 'active mode' Supplementary heater Electric back-up Off mode POFF 0.068 kW 0.000 kW elbu heating capacity * 0.130 Thermostat-off mode P_{TO} kW Type of energy input Crankcase heater mode P_{CK} 0.025 kW Standby mode P_{SB} 0.145 kW Other items For air-to-air heat pumps: Nominal air 15000 Capacity control variable m³/h flow outdoor rate, measured Sound power level. For water-/brine-to-air 83 dΒ Rated indoor outdoor L_{WA} pumps: brine or water flow m³/h measured Emissions of nitrogen rate, outdoor heat NO, mg/kWh oxides (if applicable) exchanger kg CO₂ ep 2088 GWP of the refrigerant (100 years) MITSUBISHI ELECTRIC CORPORATION Contact details AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan ** If C_d is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

EN ₂₅ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to						EV D631	71.1.1.2	E>A unite
Outdoor: PURY-				ac	oor:PEFY-P71VMA3-E×2 units, PE	F Y -P03 v	/ IVIA3-	E×4 umus
Indoor heat exchanger o				_				
Type: compressor driver				_				
if applicable: driver of c				_				
Item	Symbol	Value		_	Item Symbol		Value	Unit
		Τ						\top
Rated cooling capacity		45.00	kW		Seasonal space cooling $\eta_{s,c}$ energy efficiency		262.0	%
Declared cooling capa					Declared energy efficiency ratio or g	_		-
outdoor temperatures T _j	and indoc	or 27º/19º	°C (dry/wet		auxiliary energy factor for part	load a	t give	n outdoor
bulb)			_		temperatures T_j			
$T_j = +35 ^{\circ}C$	Pdc	45.00	kW		$T_j = +35 \text{ °C}$ EER _d		3.45	%
$T_{j} = +30 {}^{\circ}\text{C}$	Pdc	33.16	kW		$T_j = +30 ^{\circ}\text{C}$ EER _d		4.31	%
$T_i = +25 {}^{\circ}\text{C}$	Pdc	21.32	kW		$T_i = +25 ^{\circ}\text{C}$ EER _d		7.55	%
$T_{i} = +20 {}^{\circ}\text{C}$	Pdc	9.48	kW		$T_i = +20 ^{\circ}\text{C}$ EER _d		15.60	
			1		J			-
Degradation co-	C_d	25	1					┦ │
efficient air	$C_{\rm d}$	0.25	-					
Power consumption in n	nodes othe	r than 'ac						
Off mode	P_{OFF}	0.068	kW		Crankcase heater mode P_{CK}		0.025	kW
Thermostat-off mode	P_{TO}	0.025	kW		Standby mode P _{SB}		0.068	kW
			<u> </u>					
Other items								
					For air-to-air air			
Capacity control	variable				conditioner: Nominal air	16200	m	³ /h
Capacity Contact	1				flow rate, outdoor	10200	[/11
~ 1 1	 			\dashv	measured	ļ	-	
Sound power level, outdoor	L _{WA} 8	83	dB					
if engine driven:			mg/kWh					
Emissions of nitrogen			fuel input					
oxides	"		GCV					
	++		 	\dashv		 	-+	
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)					
	MITSUB	ISHI EL	ECTRIC CO)R	PORATION			
Contact details					RIGERATION SYSTEMS WORKS			
					a-City 640-8686,Japan			
** If C _d is not determine					alt degradation coefficient air condition	oners sha	all be 0	.25.
Where information relation	tes to mul	ti-split ai	r conditione	rs	, the test result and performance dat	a may b	e obtai	ned on the
					pination of indoor unit(s) recommend			

importer.
(1) This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to identify the model(s) to which the information relates: Outdoor: PURY-EP400YNW-A1/TR(-BS) Indoor: PEFY-P71VMA3-E×2 units, PEFY-P63VMA3-E×4 units Outdoor heat exchanger of air conditioner: air Indoor heat exchanger of air conditioner: air Indication if the heater is equipped with a supplementary heater: no Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional. Item Symbol Value Unit Item Symbol Value Unit Seasonal space heating kW Rated heating capacity P_{rated,h} 45.00 162.0 % energy efficiency Declared coefficient of performance or gas utilization Declared heating capacity for part load at indoor efficiency / auxiliary energy factor for part load at given temperature 20 °C and outdoor temperature T_i outdoor temperatures T_i Pdh 22.56 $T_i = -7$ °C COP_d kW 2.64 % 3.71 $T_i = +2 \, ^{\circ}C$ Pdh $T_i = +2 \, ^{\circ}C$ % 13.73 kW COP_d $T_i = +7$ °C Pdh $T_i = +7$ °C COP_d 8.83 kW 6.11 % $T_{i} = +12 \, {}^{\circ}\text{C}$ Pdh 8.00 kW $T_i = +12 \, {}^{\circ}C$ COP_d 8.11 <u>%</u> $T_i = bivalent$ $T_i = bivalent$ Pdh 25.50 kW COP_d 2.01 % temperature temperature T_i = operation limit 20.00 lkW $T_i = operation limit$ COP₄ 1.84 0/0 For water-to-air heat For air-to-water heat pumps: $T_i = -15$ °C (if pumps: $T_i = -15$ °C (if Pdh kW COP_d % $T_{OL} < -20 \, {}^{\circ}C)$ $T_{OL} < -20 \, ^{\circ}C$ For water-to-air heat T_{biv} Bivalent temperature -10.0 °C pumps: Operation limit T_{ol} $^{\circ}C$ temperature co- C_{dh} Degradation 0.25 efficient heat pumps** Power consumption in modes other than 'active mode' Supplementary heater Electric back-up Off mode POFF 0.068 kW 0.000 kW elbu heating capacity * 0.130 Thermostat-off mode P_{TO} kW Type of energy input Crankcase heater mode P_{CK} 0.025 kW Standby mode P_{SB} 0.145 kW Other items For air-to-air heat pumps: Nominal air 18900 Capacity control variable m³/h outdoor flow rate, measured Sound power level. For water-/brine-to-air outdoor L_{WA} 88 dΒ Rated indoor pumps: brine flow m³/h measured or water Emissions of nitrogen rate, outdoor heat NO, mg/kWh oxides (if applicable) exchanger kg CO₂ ep 2088 GWP of the refrigerant (100 years) MITSUBISHI ELECTRIC CORPORATION Contact details AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan ** If C_d is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

EN ₂₇ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

			0201		11 01411111011(1)				
Model(s): Information to						. DEE	X D50X	73.4.2.1	7 4
Outdoor: PURY Outdoor heat exchanger				ıd	oor:PEFY-P63VMA3-E×4 uni	its, PEF	Y-P50V	√MA3-l	E×4 units
Indoor heat exchanger of				_					
Type: compressor driver									
if applicable: driver of c									
Item	Symbol	Value			Item Symb	ool		Value	Unit
Rated cooling capacity	•	50.00	kW		Seasonal space cooling $\eta_{s,c}$ energy efficiency			261.0	%
Declared cooling capa	city for	part loa	d at given	İ	Declared energy efficiency ra	tio or g	as utiliz	zation ef	ficiency /
outdoor temperatures T _j bulb)	and indo	or 27°/19	°C (dry/wet		auxiliary energy factor for temperatures T _i	part	load a	t given	outdoor
$T_j = +35 ^{\circ}\text{C}$	Pdc	50.00	kW		$T_i = +35 ^{\circ}\text{C}$ EER _d	ı		3.61] %
$T_{i} = +30 {}^{\circ}\text{C}$	Pdc	36.84	kW		$T_j = +30 ^{\circ}\text{C}$ EER _d			4.37	%
$T_i = +25 ^{\circ}C$	Pdc	23.68	kW		$T_i = +25 ^{\circ}\text{C}$ EER _d			7.42	%
$T_j^J = +20 ^{\circ}C$	Pdc	12.70	kW		$T_j^{J} = +20 ^{\circ}\text{C}$ EER _d			15.50	%
Degradation co- efficient air	· C _d	0.25	-						
Power consumption in r	nodes oth	er than 'ac	etive mode'					-	
Off mode Thermostat-off mode	$\begin{array}{c} P_{OFF} \\ P_{TO} \end{array}$	0.076	kW kW		$ \begin{array}{ccc} \text{Crankcase heater mode} & P_{CK} \\ \text{Standby mode} & P_{SB} \\ \end{array} $	-		0.028 0.076	kW kW
Other items			1	İ					
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured		16200	m ³ /	/h
Sound power level, outdoor	$^{\prime}L_{WA}$	83	dB						
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
Contact details	AIR-CO 5-66,Teb	NDITION oira 6 Cho	NING & RE ome,Wakaya	Fl	RPORATION RIGERATION SYSTEMS WC a-City 640-8686,Japan			•	
					ult degradation coefficient air c				
Where information rela	tes to mu	lti-split ai	r conditione	ers	s, the test result and performan	ice data	a mav b	e obtain	ed on the

importer.

basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to identify the model(s) to which the information relates: Outdoor: PURY-EP450YNW-A1/TR(-BS) Indoor: PEFY-P63VMA3-E×4 units, PEFY-P50VMA3-E×4 units Outdoor heat exchanger of air conditioner: air Indoor heat exchanger of air conditioner: air Indication if the heater is equipped with a supplementary heater: no Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional. Item Symbol Value Unit Item Symbol Value Unit Seasonal space heating kW Rated heating capacity P_{rated,h} 50.00 161.0 % energy efficiency Declared coefficient of performance or gas utilization Declared heating capacity for part load at indoor efficiency / auxiliary energy factor for part load at given temperature 20 °C and outdoor temperature T_i outdoor temperatures T_i $T_i = -7$ °C Pdh 25.26 $T_i = -7$ °C COP_d 2.98 kW % $T_i = +2 \, ^{\circ}C$ Pdh 15.38 $T_i = +2 \, ^{\circ}C$ 3.32 % kW COP_d $T_i = +7$ °C Pdh $T_i = +7$ °C COP_d 6.76 9.89 kW % $T_{i} = +12 \, {}^{\circ}\text{C}$ Pdh 9.00 kW $T_i = +12 \, {}^{\circ}C$ COP_d 8.82 <u>%</u> $T_i = bivalent$ $T_i = bivalent$ Pdh 28.56 kW COP_d 1.96 % temperature temperature T_i = operation limit 22.40 kW $T_i = operation limit$ COP₄ 1.93 0/0 For water-to-air heat For air-to-water heat pumps: $T_i = -15$ °C (if pumps: $T_i = -15$ °C (if Pdh kW COP_d % $T_{OL} < -20 \, {}^{\circ}C)$ $T_{OL} < -20 \, ^{\circ}C$ For water-to-air heat $T_{\text{biv}} \\$ Bivalent temperature -10.0 °C pumps: Operation limit T_{ol} $^{\circ}C$ temperature co- C_{dh} Degradation 0.25 efficient heat pumps** Power consumption in modes other than 'active mode' Supplementary heater Electric back-up Off mode POFF 0.076 kW 0.000 kW elbu heating capacity * 0.139 Thermostat-off mode P_{TO} kW Type of energy input Crankcase heater mode P_{CK} 0.028 kW Standby mode P_{SB} 0.153 kW Other items For air-to-air heat pumps: Nominal air 18900 Capacity control variable m³/h flow outdoor rate, measured Sound power level. For water-/brine-to-air 89 dΒ Rated indoor outdoor L_{WA} pumps: brine or water flow m³/h measured Emissions of nitrogen rate, outdoor heat NO, mg/kWh oxides (if applicable) exchanger kg CO₂ ep 2088 GWP of the refrigerant (100 years) MITSUBISHI ELECTRIC CORPORATION Contact details AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66, Tebira 6 Chome, Wakayama-City 640-8686, Japan ** If C_d is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

EN ₂₉ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

		1 1/	ODUCI	11	M'ORMATION(I)				
Model(s): Information to Outdoor: PURY-	-			h 1	the information relates: Indoor:PEFY-P63VMA3-E	×8 unite			
Outdoor heat exchanger				_	Illudol .1 EF 1-1 05 VIVIA5-E	^6 units			
Indoor heat exchanger o				_					
Type: compressor driver				_					
if applicable: driver of c				_					
Item	Symbol		Unit	_	Item Syn	nbol		Value	Unit
Rated cooling capacity	P _{rated,c}	56.00	kW		Seasonal space cooling $\eta_{s,c}$ energy efficiency			256.0	%
Declared cooling capa	city for	part load	d at given	İ	Declared energy efficiency	ratio or g	gas utiliz	zation e	fficiency /
outdoor temperatures T _j bulb)	and indo	or 27º/19	°C (dry/wet		auxiliary energy factor for temperatures T _i	or part	load a	t giver	outdoor
$T_i = +35 ^{\circ}\text{C}$	Pdc	56.00	kW		$T_j = +35 ^{\circ}\text{C}$ EEI	R_d		3.02	%
$T_i = +30 {}^{\circ}\text{C}$	Pdc		kW		$T_j = +30 ^{\circ}\text{C}$ EEI	-		4.01	%
$T_i = +25 ^{\circ}C$	Pdc	26.53	kW		$T_i = +25 ^{\circ}\text{C}$ EEI	_		7.83	%
$T_j = +20 ^{\circ}C$	Pdc	14.16	kW		$T_j = +20 ^{\circ}C$ EEI	-		16.08	%
Degradation co- efficient air	C_d	0.25	-						
Power consumption in n	nodes othe	er than 'ac	ctive mode'	l					
Off mode Thermostat-off mode	$\begin{array}{c} P_{OFF} \\ P_{TO} \end{array}$		kW kW			CK SB		0.028 0.076	kW kW
Other items		_	•	İ					
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured		17700	m³.	/h
Sound power level, outdoor	L_{WA}	82	dB						
if engine driven: Emissions of nitrogen oxides			mg/kWh fuel input GCV						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)						
Contact details	AIR-CO 5-66,Teb	NDITION oira 6 Cho	NING & RE ome,Wakaya	FI	RPORATION RIGERATION SYSTEMS W na-City 640-8686,Japan			•	
					ult degradation coefficient airs, the test result and perform				

importer.

basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

Model(s): Information to Outdoor: PURY-				h 1	the information relates: Indoor:PEFY-P63VMA3	-E×8 units			
Outdoor heat exchanger									
Indoor heat exchanger o									
Indication if the heater i				ıry	heater: no				
Parameters shall be dec					son, parameters for the wa	armer and c	older he	ating se	easons are
optional.									
Item	Symbol	Value	Unit		Item	Symbol		Value	Unit
Rated heating capacity	$P_{\text{rated},h}$	56.00	kW		Seasonal space heating energy efficiency	$\eta_{s,h} \\$		161.0	%
Declared heating capa	oity for	nort lood	L at indoor		Declared coefficient of	performa	nce or	gas	utilization
temperature 20 °C and c	-	•			efficiency / auxiliary en	ergy factor	for pa	rt load	at given
T - 7°C	Pdh	20.42]kW		outdoor temperatures T _j	COD	ı	2.71	امر
$T_j = -7 ^{\circ}\text{C}$			-		$T_j = -7$ °C	COP_d		2.71	%
$T_j = +2 ^{\circ}C$	Pdh	17.30	kW		$T_j = +2 ^{\circ}\text{C}$	COP_d		3.54	%
$T_j = +7$ °C	Pdh	11.12	kW		$T_j = +7 ^{\circ}\text{C}$	COP_d		6.59	%
$T_{j} = + 12 {}^{\circ}\text{C}$	Pdh	10.10	kW		$T_{j} = + 12 {}^{\circ}\text{C}$	COP_d		7.27	%
$T_j = bivalent$ temperature	Pdh	32.13	kW		$T_j = bivalent$ temperature	COP_d		2.02	%
$T_i = operation limit$	Pdh	25.20	kW		T_i = operation limit	COP_d		2.01	%
For air-to-water heat			1		For water-to-air heat				1
pumps: $T_i = -15$ °C (if	Pdh	-	kW		pumps: $T_j = -15$ °C (if	COP_d		-	%
$T_{OL} < -20 {}^{\circ}C)$					$T_{OL} < -20$ °C)				
,			1		For water-to-air heat				1
Bivalent temperature	$T_{\rm biv}$	-10.0	°C		pumps: Operation limit	T_{ol}		-	°C
•					temperature	0.			
			1		1				1
Degradation co-	C	0.25	1						1
efficient heat pumps**	C_{dh}	0.25	-						
•		41 !	4: 1-1	ĺ	C111				
Power consumption in n	nodes oun	er than ac	ctive mode		Supplementary heater				
Off mode	P_{OFF}	0.076	kW		Electric back-up heating capacity *	elbu		0.000	kW
Thermostat-off mode	\mathbf{P}_{TO}	0.147	kW		Type of energy input				!
Crankcase heater mode	P_{CK}	0.028	kW		Standby mode	P_{SB}		0.153	kW
Other items				İ					
				Γ	For air-to-air heat				
Cama aitre a amtual	variable				pumps: Nominal air		17700	m^3	/ L
Capacity control	variable				flow rate, outdoor	l ⁻	17700		11
					measured				
Sound power level,					For water-/brine-to-air				
indoor / outdoor	L_{WA}	84	dB		heat pumps: Rated				
measured					brine or water flow	-	-	m^3	/h
Emissions of nitrogen	NO		mg/kWh	Г	rate, outdoor heat				
oxides (if applicable)	NO_{X}		mg/k wn		exchanger				
GWP of the refrigerant		2088	kg CO ₂ ep						
			(100 years)	L					
	MITSUI	BISHI EL	ECTRIC CO	ΟF	RPORATION				
Contact details	AIR-CO	NDITION	NING & RE	FI	RIGERATION SYSTEMS	WORKS			
	5-66,Tel	oira 6 Cho	me,Wakaya	ım	a-City 640-8686,Japan				
** If C _d is not determine					ult degradation coefficient	of heat pun	ps shall	be 0,25	5.
Where information relat	tes to mu	lti-split ai	r conditione	ers	s, the test result and perfor	rmance data	may b	e obtain	ed on the
					bination of indoor unit(s) r				
importer							•		

EN ₃₁ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281

		1 11	ODUCI	1.	M'ORMATION(I)					
Model(s): Information to Outdoor: PURY	-			h	the information relates: Indoor:PEFY-P71VMA3-E×8 u	nite				
Outdoor heat exchanger					mdoor.1 L1 1-1 /1 v WA3-L×6 u	iiits				
Indoor heat exchanger of										
Type: compressor driver										
if applicable: driver of c										
Item	Symbol		Unit		Item Symbol		Valu	ıe	Unit	
Rated cooling capacity	P _{rated,c}	63.00	kW		Seasonal space cooling $\eta_{s,c}$ energy efficiency		245.0	0	%	
Declared cooling capacity for part load at given				1	Declared energy efficiency ratio	or gas util	ization	eff	iciency /	
outdoor temperatures T _i	and indo	or 27°/19	°C (dry/wet	auxiliary energy factor for part load at given outdoor						
bulb)			_	l	temperatures T _j					
$T_i = +35 ^{\circ}\text{C}$	Pdc	63.00	kW	l	$T_j = +35 ^{\circ}\text{C}$ EER _d		2.86		0/0	
$T_i = +30 {}^{\circ}\text{C}$	Pdc	46.42	kW	l	$T_j = +30 ^{\circ}\text{C}$ EER _d		3.75	/5		
$T_{i} = +25 {}^{\circ}\text{C}$	Pdc	29.84	kW	l	$T_i = +25 ^{\circ}\text{C}$ EER _d		7.50			
$T_{i} = +20 {}^{\circ}\text{C}$	Pdc	14.21	kW		$T_i = +20 ^{\circ}\text{C}$ EER _d		15.62	-	0/0	
Degradation co- efficient air	· C _d	0.25	-							
Power consumption in n	nodes othe	er than 'ac	ctive mode'							
Off mode Thermostat-off mode	$\begin{array}{c} P_{OFF} \\ P_{TO} \end{array}$		kW kW				0.023		kW kW	
Other items				1						
Capacity control	variable				For air-to-air air conditioner: Nominal air flow rate, outdoor measured	19500	1	m³/l	ı	
Sound power level, outdoor	L_{WA}	83	dB							
if engine driven: Emissions of nitrogen oxides		-	mg/kWh fuel input GCV							
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)							
Contact details	MITSUBISHI ELECTRIC CORPORATION AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS 5-66,Tebira 6 Chome,Wakayama-City 640-8686,Japan									
					ult degradation coefficient air con					
where information rela	tes to mul	ııı-spiit ai	r conditions	er	s, the test result and performance	aata may	be obta	aıne	a on the	

(1) This information is based on COMMISSION REGULATION(EU)2016/2281

basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or

Model(s): Information to	-			h 1		. F., 0 '.					
Outdoor: PURY				_	Indoor: PEFY-P71VMA3	5-E×8 units					
Outdoor heat exchanger of Indoor heat exchanger of				—							
Indication if the heater i					heater: no						
Parameters shall be dec					ason, parameters for the wa	armer and o	colder he	eating	sea	sons are	
optional.	C11	3.7.1	TT '4	_	Τ,	C 1 1		3 7 - 1	1	r	
Item	Symbol	Value	Unit	1	Item	Symbol		Valu	ie T	Unit	
Rated heating capacity	P _{rated,h}	63.00	kW		Seasonal space heating energy efficiency	$\eta_{s,h}$		161.		%	
Declared heating capa	city for	part load	l at indoor	1	Declared coefficient of	-		_			
temperature 20 °C and outdoor temperature T _j					efficiency / auxiliary en outdoor temperatures T _i	ergy facto	r tor pa	art loa	ıd a	at given	
$T_i = -7$ °C	Pdh	31.14	kW	l	$T_i = -7 ^{\circ}C$	COP_d		2.81	1	%	
$T_i = +2 ^{\circ}C$	Pdh	18.95	kW	l	$T_i = +2 ^{\circ}C$	COP_d		3.61		%	
$T_i = +7 ^{\circ}C$	Pdh	12.18	kW	l	$T_i = +7 ^{\circ}C$	COP_d		6.21		0/o	
$T_{j}^{r} = + 12 {}^{\circ}\text{C}$	Pdh	10.10	kW	l	$T_{i}^{j} = +12 {}^{\circ}\text{C}$	COP_d		6.85	<u>.</u>	0/o	
T_i^{\prime} = bivalent			1	l	T_i = bivalent				\neg		
temperature	Pdh	35.19	kW	l	temperature	COP_d		1.96		0/0	
T_i = operation limit	Pdh	27.60	kW	l	T_i = operation limit	COP_d		1.86	<u> </u>	%	
For air-to-water heat	:		1	l	For water-to-air heat						
pumps: $T_i = -15$ °C (if	Pdh	-	kW	l	pumps: $T_i = -15$ °C (if	COP_d		-	1	%	
$T_{OL} < -20$ °C)				l	$T_{OL} < -20$ °C)						
OL ,			1	l	For water-to-air heat						
Bivalent temperature	T_{biv}	-10.0	°C	l	pumps: Operation limit	T_{ol}		-	-	°C	
1				l	temperature	0.					
			1	l							
Degradation co-			1	l					\exists		
Degradation co- efficient heat pumps**	C_{dh}	0.25	-	l							
n				1					_		
Power consumption in r	nodes oth	er than 'ac	ctive mode'	l	Supplementary heater						
Off mode	P_{OFF}	0.076	kW		Electric back-up	elbu		0.000	, ,	kW	
			_		heating capacity *			0.000			
Thermostat-off mode	P _{TO}	0.147	kW		Type of energy input						
Crankcase heater mode	P_{CK}	0.028	kW		Standby mode	P_{SB}		0.153		kW	
Other items				L			•				
				l	For air-to-air heat						
Capacity control	variable			l	pumps: Nominal air	_	25200	ln	n³/h		
				l	flow rate, outdoor						
				Ļ	measured						
Sound power level,		00	100	l	For water-/brine-to-air						
indoor / outdoor	L_{WA}	89	dB	l	heat pumps: Rated				2.4		
measured				L	brine or water flow	-	-	n	n³/h		
Emissions of nitrogen	NO _v	-	mg/kWh	l	rate, outdoor heat						
oxides (if applicable)				╀	exchanger						
GWP of the refrigerant		2088	kg CO _{2 ep} (100 years)								
	MITSUBISHI ELECTRIC CORPORATION										
Contact details	AIR-CONDITIONING & REFRIGERATION SYSTEMS WORKS										
	5-66,Tebira 6 Chome,Wakayama-City 640-8686,Japan										
** If C _d is not determine					ult degradation coefficient	of heat pur	nps shal	1 be 0.	25.		
					s, the test result and perform	_	_			d on the	
					bination of indoor unit(s) r						
importer			,		(b) I		-) 111				

EN ₃₃ EN

⁽¹⁾ This information is based on COMMISSION REGULATION(EU)2016/2281