PRODUCT INFORMATION⁽¹⁾

Model(s): Information to identify the model(s) to which the information relates:

Outdoor: PUZ-ZM125YKA

Indoor: PEAD-M125JA

Outdoor side heat exchanger of air conditioner: air

Indoor side heat exchanger of air conditioner: air

Type: compressor driven vapour compression

If applicable: driver of compressor: electric motor

Item	Symbol	Value	Unit		Item	Symbol	Value	Unit	
Rated cooling capacity	P _{rated,c}	12,50	kW		Seasonal space cooling energy efficiency	$\eta_{s,c}$	234,5	%	
Declared cooling capacity for part load at given outdoor temperatures Tj and indoor 27°/19 °C (dry/wet bulb)					Declared energy efficiency ratio for part load at given outdoor temperatures Tj				
Tj = + 35 °C	Pdc	12,50	kW		Tj = + 35 °C	EER _d	3,75	_	
Tj = + 30 °C	Pdc	9,20	kW		Tj = + 30 °C	EER _d	5,30	_	
Tj = + 25 °C	Pdc	5,90	kW		Tj = + 25 °C	EER _d	7,00	_	
Tj = + 20 °C	Pdc	4,60	kW		Tj = + 20 °C	EER _d	7,80	_	
Degradation co-efficient for air conditioners(*)	C _{dc}	0,25	_						
	P	ower consi	umption in mo	ode	s other than 'active mod	e'			

Off mode	P _{OFF}	0,023	kW	Crankcase heater mode	Р _{ск}	0,000	kW
Thermostat-off mode	P _{TO}	0,017	kW	Standby mode	P_{SB}	0,023	kW

Other items

Capacity control		variable			For air-to-air air conditioner: air flow rate, outdoor measured	_	7200	m³/h
Sound power level, indoor/outdoor	L _{WA}	66,0 / 70,0	dB					
If engine driven: Emissions of nitrogen oxides	NO _x (**)	_	mg/kWh fuel input GCV					
GWP of the refrigerant		675	kg CO _{2 eq} (100 years)					
Contact details		MITSUBISHI ELECTRIC CORPORATION SHIZUOKA WORKS 3-18-1, Dshika, Suruga-ku, Shizuoka 422-8528, Japan						

(*) If C_{dc} is not determined by measurement then the default degradation coefficient air conditioners shall be 0,25. **) From 26 September 2018.

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

(1) This information is based on COMMISSION REGULATION (EU) 2016/2281

Recycle

Your MITSUBISHI ELECTRIC product is designed and manufactured with high quality materials and components which can be recycled and reused.

Electrical and electronic equipment, at their end-of-life, should be disposed of separately from your household waste. Please, dispose of this equipment at your local community waste collection/recycling center.

In the European Union there are separate collection systems for used electrical and electronic product.

Please, help us to conserve the environment we live in!

PRODUCT INFORMATION(1)

Information to identify the model(s) to which the information relates:

Outdoor: PUZ-ZM125YKA

Indoor: PEAD-M125JA

Outdoor side heat exchanger of heat pump: air

Indoor side heat exchanger of heat pump: air

Indication if the heater is equipped with a supplementary heater: no

If applicable: driver of compressor: electric motor

Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Item	Symbol	Value	Unit		Item	Symbol	Value	Unit	
Tj = -7 °CPdh8,20kWTj = -7 °CCOP _d 2,80Tj = + 2 °CPdh5,00kWTj = + 2 °CCOP _d 4,10Tj = + 7 °CPdh3,90kWTj = + 7 °CCOP _d 4,50Tj = + 12 °CPdh4,00kWTj = + 12 °CCOP _d 4,50T _{bw} = bivalent temperaturePdh9,30kWTj = + 12 °CCOP _d 2,50T _{oL} = operation limitPdh7,00kWT _{oL} = operation limitCOP _d 1,60For air-to-water heat pumps: Tj = -15 °C (if T _{oL} < -20 °C)PdhkWFor water-to-air heat pumps: Tj = -15 °C (if T _{oL} < -20 °C)COP _d Bivalent temperatureT _{bw} -10°CFor water-to-air heat pumps: Operation limit temperatureT _{ol} °CDegradation co-efficient heat pumps(**)0,25Suptementary heaterSuptementary heaterOff modeP _{OFF} 0,023kWType of energy inputU0,000kWThermostat-off modeP _{TO} 0,015kWType of energy input0,023kW		P _{rated,h}	14,00	kW		heating energy	η _{s,h}	153,2	%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj = – 7 °C	Pdh	8,20	kW		Tj = − 7 °C	COP _d	2,80	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj = + 2 °C	Pdh	5,00	kW		Tj = + 2 °C	COPd	4,10	_	
Twi = bivalent temperaturePdh9,30kWTwi = bivalent temperature COP_d 2,50-T_{oL} = operation limitPdh7,00kWT_{oL} = operation limit COP_d 1,60-For air-to-water heat pumps: Tj = -15 °C (if T_{OL} - 20 °C)Pdh-kWToL = operation limit COP_d 1,60-For air-to-water heat pumps: Tj = -15 °C (if T_{OL} - 20 °C)Pdh-kWFor water-to-air heat pumps: Tj = -15 °C (if T_{OL} < -20 °C)	Tj = + 7 °C	Pdh	3,90	kW		Tj = + 7 °C	COP_d	4,50	_	
temperatureP unit9,30KWtemperatureCOP d2,30Z,30Z T_{OL} = operation limitPdh7,00kW T_{OL} = operation limitCOP d1,60-For air-to-water heat pumps: Tj = -15 °C (if $T_{OL} < -20 °C$)Pdh-kWFor water-to-air heat pumps: Tj = -15 °C (if $T_{OL} < -20 °C$)COP dBivalent temperature T_{biv} -10°CFor water-to-air heat pumps: Operation limit temperatureT_ol-°CDegradation co-efficient heat pumps(**) C_{dh} $0,25$ -Image: Corr dImage: Corr d-Power consumption in modes other than 'active mode'Supplementary heaterImage: Corr dSupplementary heaterOff mode P_{OFF} $0,023$ kWBack-up heating capacity (*)elbu $0,000$ kWThermostat-off mode P_{CK} $0,000$ kWStandby mode P_{SB} $0,023$ kW	Tj = + 12 °C	Pdh	4,00	kW		Tj = + 12 °C	COP_d	5,30	-	
For air-to-water heat pumps: $T_{j} = -15 ^{\circ}C$ (if $T_{oL} < -20 ^{\circ}C$)Pdh-kWFor water-to-air heat pumps: $T_{j} = -15 ^{\circ}C$ (if $T_{oL} < -20 ^{\circ}C$) COP_{d} Bivalent temperature T_{biv} -10 $^{\circ}C$ For water-to-air heat pumps: Operation limit temperature T_{ol} $^{\circ}C$ Degradation co-efficient heat pumps(**) C_{dh} $0,25$ -Image: Complex state of the state of temperatureImage: Complex state of temperatureOff mode P_{oFF} $0,023$ kWBack-up heating capacity (*)elbu $0,000$ kWThermostat-off mode P_{TO} $0,015$ kWType of energy input T_{ol} T_{ol} Crankcase heater mode P_{CK} $0,000$ kWStandby mode P_{SB} $0,023$ kW	T _{biv} = bivalent temperature	Pdh	9,30	kW			COP_{d}	2,50	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T_{OL} = operation limit	Pdh	7,00	kW		T_{OL} = operation limit	COPd	1,60	_	
Bivalent temperature T_{biv} -10 $^{\circ}C$ pumps: Operation limit temperature T_{ol} $ ^{\circ}C$ Degradation co-efficient heat pumps(**) C_{dh} $0,25$ $ -$ <td< td=""><td>pumps: $T_j = -15 \text{ °C}$ (if</td><td>Pdh</td><td>_</td><td>kW</td><td></td><td>pumps: Tj = – 15 °C</td><td>COP₀</td><td>-</td><td>_</td></td<>	pumps: $T_j = -15 \text{ °C}$ (if	Pdh	_	kW		pumps: Tj = – 15 °C	COP₀	-	_	
$ \begin{array}{c c} \hline co-efficient heat \\ pumps(**) \end{array} & \hline C_{dh} & 0,25 & - & \hline \\ \hline Power consumption in modes other than 'active mode' & Supplementary heater \\ \hline \\ Off mode & P_{OFF} & 0,023 & kW & Back-up heating \\ \hline \\ Thermostat-off mode & P_{TO} & 0,015 & kW & Type of energy input \\ \hline \\ \hline \\ Crankcase heater \\ mode & P_{CK} & 0,000 & kW & Standby mode & P_{SB} & 0,023 & kW \\ \hline \end{array} $	Bivalent temperature	T_{biv}	-10	°C		pumps: Operation limit	T _{ol}	-	°C	
$\begin{array}{c c} \hline co-efficient heat \\ pumps(**) \end{array} & \hline C_{dh} & 0,25 & - & \hline \\ \hline Power consumption in modes other than 'active mode' & Supplementary heater \\ \hline \\ Off mode & P_{OFF} & 0,023 & kW & Back-up heating \\ \hline \\ Thermostat-off mode & P_{TO} & 0,015 & kW & Type of energy input \\ \hline \\ \hline \\ Crankcase heater \\ mode & P_{CK} & 0,000 & kW & Standby mode & P_{SB} & 0,023 & kW \\ \hline \end{array}$										
Off modeP_{OFF}0,023kWBack-up heating capacity (*)elbu0,000kWThermostat-off modeP_TO0,015kWType of energy input </td <td>co-efficient heat</td> <td>C_{dh}</td> <td>0,25</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	co-efficient heat	C _{dh}	0,25	-						
Off modePOFF0,023kWcapacity (*)eibu0,000kWThermostat-off modePTO0,015kWType of energy inputCrankcase heater modePCK0,000kWStandby modePSB0,023kW	Power consumption in modes other than 'active mode'					Supplementary heater				
Crankcase heater mode Р _{ск} 0,000 kW Standby mode Р _{sв} 0,023 kW	Off mode	P_{OFF}	0,023	kW			elbu	0,000	kW	
mode P_{CK} 0,000 KW Standby mode P_{SB} 0,023 KW	Thermostat-off mode	P _{TO}	0,015	kW		Type of energy input				
Other items		P _{CK}	0,000	kW		Standby mode	P_{SB}	0,023	kW	
			~	Othe	er ite	ems	-			

For air-to-air heat m³/h 7200 variable pumps: air flow rate, Capacity control outdoor measured Sound power level, For water/brine-to-air 66,0 / 72,0 dB L_{WA} indoor/outdoor heat pumps: Rated m³/h brine or water flow mg/kWh Emissions of nitrogen rate, outdoor side heat $NO_{x}(***)$ fuel input oxides (if applicable) exchanger GCV $kg \ CO_{2 \ eq}$ GWP of the refrigerant 675 (100 years) MITSUBISHI ELECTRIC CORPORATION SHIZUOKA WORKS 3-18-1, Contact details Oshika, Suruga-ku, Shizuoka 422-8528, Japan

^{(*) (**)} If C_{dh} is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. (***) From 26 September 2018.

performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

⁽¹⁾ This information is based on COMMISSION REGULATION (EU) 2016/2281